Click or drag to resize
Accord.NET (logo)

Accord.MachineLearning.VectorMachines.Learning Namespace

Contains algorithms for training Support Vector Machines (SVMs).
Classes
  ClassDescription
Public classCode exampleAveragedStochasticGradientDescent
Averaged Stochastic Gradient Descent (ASGD) for training linear support vector machines.
Public classCode exampleAveragedStochasticGradientDescent<TKernel>
Averaged Stochastic Gradient Descent (ASGD) for training linear support vector machines.
Public classAveragedStochasticGradientDescent<TKernel, TInput>
Averaged Stochastic Gradient Descent (ASGD) for training linear support vector machines.
Public classCode exampleAveragedStochasticGradientDescent<TKernel, TInput, TLoss>
Averaged Stochastic Gradient Descent (ASGD) for training linear support vector machines.
Public classBaseAveragedStochasticGradientDescent<TModel, TKernel, TInput, TLoss>
Base class for Averaged Stochastic Gradient Descent algorithm implementations.
Public classBaseFanChenLinSupportVectorRegression<TModel, TKernel, TInput>
Base class for Fan-Chen-Lin (LibSVM) regression algorithms.
Public classBaseLinearCoordinateDescent<TModel, TKernel>
Base class for linear coordinate descent learning algorithm.
Public classBaseLinearDualCoordinateDescent<TModel, TKernel, TInput>
Base class for Linear Dual Coordinate Descent.
Public classBaseLinearNewtonMethod<TModel, TKernel>
Base class for L2-regularized L2-loss linear support vector classification (primal).
Public classBaseLinearNewtonMethod<TModel, TKernel, TInput>
L2-regularized L2-loss linear support vector classification (primal).
Public classBaseLinearRegressionCoordinateDescent<TModel, TKernel, TInput>
Base class for Coordinate descent algorithm for the L1 or L2-loss linear Support Vector Regression (epsilon-SVR) learning problem in the dual form (-s 12 and -s 13).
Public classBaseLinearRegressionNewtonMethod<TModel, TKernel, TInput>
Base class for newton method for linear regression learning algorithm.
Public classBaseMulticlassSupportVectorLearning<TBinary, TKernel, TModel>
Base class for multi-class support vector learning algorithms.
Public classBaseMulticlassSupportVectorLearning<TInput, TBinary, TKernel, TModel>
Base class for multi-class support vector learning algorithms.
Public classBaseMultilabelSupportVectorLearning<TInput, TBinary, TKernel, TModel>
Base class for multi-label support vector learning algorithms.
Public classBaseOneclassSupportVectorLearning<TModel, TKernel, TInput>
One-class Support Vector Machine Learning Algorithm.
Public classBaseProbabilisticCoordinateDescent<TModel, TKernel, TInput>
Base class for L1-regularized logistic regression (probabilistic SVM) learning algorithm (-s 6).
Public classBaseProbabilisticDualCoordinateDescent<TModel, TKernel, TInput>
Base class for L2-regularized logistic regression (probabilistic support vector machine) learning algorithm in the dual form (-s 7).
Public classBaseProbabilisticNewtonMethod<TModel, TKernel, TInput>
Base class for probabilistic Newton Method learning.
Public classBaseSequentialMinimalOptimization<TModel, TKernel, TInput>
Base class for Sequential Minimal Optimization.
Public classBaseSequentialMinimalOptimizationRegression<TModel, TKernel, TInput>
Base class for Sequential Minimal Optimization for regression.
Public classBaseStochasticGradientDescent<TModel, TKernel, TInput, TLoss>
Base class for Averaged Stochastic Gradient Descent algorithm implementations.
Public classBaseSupportVectorCalibration<TModel, TKernel, TInput>
Base class for SupportVectorMachine calibration algorithms.
Public classBaseSupportVectorClassification<TModel, TKernel, TInput>
Base class for SupportVectorMachine learning algorithms.
Public classBaseSupportVectorRegression<TModel, TKernel, TInput>
Base class for SupportVectorMachine regression learning algorithms.
Public classFanChenLinSupportVectorRegression
Support vector regression using FanChenLinQuadraticOptimization (LibSVM) algorithm.
Public classFanChenLinSupportVectorRegression<TKernel>
Support vector regression using FanChenLinQuadraticOptimization (LibSVM) algorithm.
Public classFanChenLinSupportVectorRegression<TKernel, TInput>
Support vector regression using FanChenLinQuadraticOptimization (LibSVM) algorithm.
Public classLeastSquaresLearning
Least Squares SVM (LS-SVM) learning algorithm.
Public classLeastSquaresLearning<TKernel, TInput>
Least Squares SVM (LS-SVM) learning algorithm.
Public classLeastSquaresLearningBase<TModel, TKernel, TInput>
Base class for Least Squares SVM (LS-SVM) learning algorithm.
Public classLinearCoordinateDescent
L1-regularized L2-loss support vector Support Vector Machine learning (-s 5).
Public classLinearCoordinateDescent<TKernel>
L1-regularized L2-loss support vector Support Vector Machine learning (-s 5).
Public classCode exampleLinearDualCoordinateDescent
L2-regularized, L1 or L2-loss dual formulation Support Vector Machine learning (-s 1 and -s 3).
Public classCode exampleLinearDualCoordinateDescent<TKernel>
L2-regularized, L1 or L2-loss dual formulation Support Vector Machine learning (-s 1 and -s 3).
Public classCode exampleLinearDualCoordinateDescent<TKernel, TInput>
L2-regularized, L1 or L2-loss dual formulation Support Vector Machine learning (-s 1 and -s 3).
Public classLinearNewtonMethod
L2-regularized L2-loss linear support vector classification (primal).
Public classLinearNewtonMethod<TKernel, TInput>
L2-regularized L2-loss linear support vector classification (primal).
Public classLinearRegressionCoordinateDescent
Coordinate descent algorithm for the L1 or L2-loss linear Support Vector Regression (epsilon-SVR) learning problem in the dual form (-s 12 and -s 13).
Public classLinearRegressionCoordinateDescent<TKernel, TInput>
Coordinate descent algorithm for the L1 or L2-loss linear Support Vector Regression (epsilon-SVR) learning problem in the dual form (-s 12 and -s 13).
Public classLinearRegressionNewtonMethod
L2-regularized L2-loss linear support vector regression (SVR) learning algorithm in the primal formulation (-s 11).
Public classLinearRegressionNewtonMethod<TKernel, TInput>
L2-regularized L2-loss linear support vector regression (SVR) learning algorithm in the primal formulation (-s 11).
Public classCode exampleMulticlassSupportVectorLearning Obsolete.
One-against-one Multi-class Support Vector Machine Learning Algorithm
Public classCode exampleMulticlassSupportVectorLearning<TKernel>
One-against-one Multi-class Support Vector Machine Learning Algorithm
Public classCode exampleMulticlassSupportVectorLearning<TKernel, TInput>
One-against-one Multi-class Support Vector Machine Learning Algorithm
Public classMultilabelSupportVectorLearning Obsolete.
Obsolete.
Public classCode exampleMultilabelSupportVectorLearning<TKernel>
One-against-all Multi-label Support Vector Machine Learning Algorithm
Public classCode exampleMultilabelSupportVectorLearning<TKernel, TInput>
One-against-all Multi-label Support Vector Machine Learning Algorithm
Public classCode exampleOneclassSupportVectorLearning Obsolete.
One-class Support Vector Machine learning algorithm.
Public classCode exampleOneclassSupportVectorLearning<TKernel>
One-class Support Vector Machine learning algorithm.
Public classCode exampleOneclassSupportVectorLearning<TKernel, TInput>
One-class Support Vector Machine learning algorithm.
Public classProbabilisticCoordinateDescent
L1-regularized logistic regression (probabilistic SVM) learning algorithm (-s 6).
Public classProbabilisticCoordinateDescent<TKernel, TInput>
L1-regularized logistic regression (probabilistic SVM) learning algorithm (-s 6).
Public classProbabilisticDualCoordinateDescent
L2-regularized logistic regression (probabilistic support vector machine) learning algorithm in the dual form (-s 7).
Public classProbabilisticDualCoordinateDescent<TKernel, TInput>
L2-regularized logistic regression (probabilistic support vector machine) learning algorithm in the dual form (-s 7).
Public classProbabilisticNewtonMethod
L2-regularized L2-loss logistic regression (probabilistic support vector machine) learning algorithm in the primal.
Public classProbabilisticNewtonMethod<TKernel>
L2-regularized L2-loss logistic regression (probabilistic support vector machine) learning algorithm in the primal.
Public classProbabilisticNewtonMethod<TKernel, TInput>
L2-regularized L2-loss logistic regression (probabilistic support vector machine) learning algorithm in the primal.
Public classCode exampleProbabilisticOutputCalibration
Probabilistic Output Calibration for Linear machines.
Public classCode exampleProbabilisticOutputCalibration<TKernel>
Probabilistic Output Calibration for Kernel machines.
Public classCode exampleProbabilisticOutputCalibration<TKernel, TInput>
Probabilistic Output Calibration for structured Kernel machines.
Public classProbabilisticOutputCalibrationBase<TModel, TKernel, TInput>
Probabilistic Output Calibration.
Public classCode exampleSequentialMinimalOptimization
Sequential Minimal Optimization (SMO) Algorithm
Public classCode exampleSequentialMinimalOptimization<TKernel>
Sequential Minimal Optimization (SMO) Algorithm.
Public classCode exampleSequentialMinimalOptimization<TKernel, TInput>
Sequential Minimal Optimization (SMO) Algorithm (for arbitrary data types).
Public classCode exampleSequentialMinimalOptimizationRegression
Sequential Minimal Optimization (SMO) Algorithm for Regression. Warning: this code is contained in a GPL assembly. Thus, if you link against this assembly, you should comply with the GPL license.
Public classCode exampleSequentialMinimalOptimizationRegression<TKernel>
Sequential Minimal Optimization (SMO) Algorithm for Regression. Warning: this code is contained in a GPL assembly. Thus, if you link against this assembly, you should comply with the GPL license.
Public classCode exampleSequentialMinimalOptimizationRegression<TKernel, TInput>
Sequential Minimal Optimization (SMO) Algorithm for Regression. Warning: this code is contained in a GPL assembly. Thus, if you link against this assembly, you should comply with the GPL license.
Public classCode exampleStochasticGradientDescent
Stochastic Gradient Descent (SGD) for training linear support vector machines.
Public classCode exampleStochasticGradientDescent<TKernel>
Stochastic Gradient Descent (SGD) for training linear support vector machines.
Public classCode exampleStochasticGradientDescent<TKernel, TInput>
Stochastic Gradient Descent (SGD) for training linear support vector machines.
Public classCode exampleStochasticGradientDescent<TKernel, TInput, TLoss>
Stochastic Gradient Descent (SGD) for training linear support vector machines.
Public classCode exampleSupportVectorReduction
Exact support vector reduction through linear dependency elimination.
Public classCode exampleSupportVectorReduction<TKernel>
Exact support vector reduction through linear dependency elimination.
Public classCode exampleSupportVectorReduction<TKernel, TInput>
Exact support vector reduction through linear dependency elimination.
Public classCode exampleSupportVectorReductionBase<TModel, TKernel, TInput>
Exact support vector reduction through linear dependency elimination.
Interfaces
Delegates
  DelegateDescription
Public delegateSupportVectorMachineLearningConfigurationFunction Obsolete.
Obsolete.
Enumerations
  EnumerationDescription
Public enumerationLoss
Different categories of loss functions that can be used to learn support vector machines.
Public enumerationSelectionStrategy
Gets the selection strategy to be used in SMO.