Click or drag to resize
Accord.NET (logo)

AveragedStochasticGradientDescentTKernel, TInput Class

Averaged Stochastic Gradient Descent (ASGD) for training linear support vector machines.
Inheritance Hierarchy
SystemObject
  Accord.MachineLearningBinaryLearningBaseSupportVectorMachineTKernel, TInput, TInput
    Accord.MachineLearning.VectorMachines.LearningBaseAveragedStochasticGradientDescentSupportVectorMachineTKernel, TInput, TKernel, TInput, HingeLoss
      Accord.MachineLearning.VectorMachines.LearningAveragedStochasticGradientDescentTKernel, TInput

Namespace:  Accord.MachineLearning.VectorMachines.Learning
Assembly:  Accord.MachineLearning (in Accord.MachineLearning.dll) Version: 3.8.0
Syntax
public sealed class AveragedStochasticGradientDescent<TKernel, TInput> : BaseAveragedStochasticGradientDescent<SupportVectorMachine<TKernel, TInput>, TKernel, TInput, HingeLoss>
where TKernel : struct, new(), ILinear<TInput>
where TInput : IList, ICloneable
Request Example View Source

Type Parameters

TKernel
TInput

The AveragedStochasticGradientDescentTKernel, TInput type exposes the following members.

Constructors
  NameDescription
Public methodAveragedStochasticGradientDescentTKernel, TInput
Initializes a new instance of the AveragedStochasticGradientDescentTKernel, TInput class
Top
Properties
  NameDescription
Public propertyCurrentEpoch
Gets or sets the current epoch counter.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyIterations Obsolete.
Please use MaxIterations instead.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyKernel
Gets or sets the kernel function use to create a kernel Support Vector Machine.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLambda
Gets or sets the lambda regularization term. Default is 0.5.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLearningRate
Gets or sets the learning rate for the SGD algorithm.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLoss
Gets or sets the loss function to be used. Default is to use the LogisticLoss.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyMaxIterations (Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyModel
Gets or sets the classifier being learned.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public propertyParallelOptions
Gets or sets the parallelization options for this algorithm.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyToken
Gets or sets a cancellation token that can be used to cancel the algorithm while it is running.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyTolerance
Gets or sets the maximum relative change in the watched value after an iteration of the algorithm used to detect convergence. Default is 1e-3. If set to 0, the loss will not be computed during learning and execution will be faster.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Top
Methods
  NameDescription
Public methodClone
Creates a new object that is a copy of the current instance.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodLearn(TInput, Boolean, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Double, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Int32, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Int32, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Boolean, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodTo(Type)Overloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
See Also