Click or drag to resize
Accord.NET (logo)

AveragedStochasticGradientDescentTKernel, TInput Properties

The AveragedStochasticGradientDescentTKernel, TInput generic type exposes the following members.

Properties
  NameDescription
Public propertyCurrentEpoch
Gets or sets the current epoch counter.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyIterations Obsolete.
Please use MaxIterations instead.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyKernel
Gets or sets the kernel function use to create a kernel Support Vector Machine.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLambda
Gets or sets the lambda regularization term. Default is 0.5.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLearningRate
Gets or sets the learning rate for the SGD algorithm.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyLoss
Gets or sets the loss function to be used. Default is to use the LogisticLoss.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyMaxIterations (Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyModel
Gets or sets the classifier being learned.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public propertyParallelOptions
Gets or sets the parallelization options for this algorithm.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyToken
Gets or sets a cancellation token that can be used to cancel the algorithm while it is running.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Public propertyTolerance
Gets or sets the maximum relative change in the watched value after an iteration of the algorithm used to detect convergence. Default is 1e-3. If set to 0, the loss will not be computed during learning and execution will be faster.
(Inherited from BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss.)
Top
See Also