Click or drag to resize
Accord.NET (logo)

ProbabilisticOutputCalibrationBaseTModel, TKernel, TInput Class

Probabilistic Output Calibration.
Inheritance Hierarchy
SystemObject
  Accord.MachineLearningBinaryLearningBaseTModel, TInput
    Accord.MachineLearning.VectorMachines.LearningProbabilisticOutputCalibrationBaseTModel, TKernel, TInput
      Accord.MachineLearning.VectorMachines.LearningProbabilisticOutputCalibration
      Accord.MachineLearning.VectorMachines.LearningProbabilisticOutputCalibrationTKernel
      Accord.MachineLearning.VectorMachines.LearningProbabilisticOutputCalibrationTKernel, TInput

Namespace:  Accord.MachineLearning.VectorMachines.Learning
Assembly:  Accord.MachineLearning (in Accord.MachineLearning.dll) Version: 3.7.0
Syntax
public abstract class ProbabilisticOutputCalibrationBase<TModel, TKernel, TInput> : BinaryLearningBase<TModel, TInput>, 
	ISupportVectorMachineLearning<TInput>, ISupervisedBinaryLearning<ISupportVectorMachine<TInput>, TInput>, 
	ISupervisedMulticlassLearning<ISupportVectorMachine<TInput>, TInput>, ISupervisedMultilabelLearning<ISupportVectorMachine<TInput>, TInput>, 
	ISupervisedLearning<ISupportVectorMachine<TInput>, TInput, int[]>, ISupervisedLearning<ISupportVectorMachine<TInput>, TInput, bool[]>, 
	ISupervisedLearning<ISupportVectorMachine<TInput>, TInput, int>, ISupervisedLearning<ISupportVectorMachine<TInput>, TInput, bool>, 
	ISupervisedLearning<ISupportVectorMachine<TInput>, TInput, double>
where TModel : SupportVectorMachine<TKernel, TInput>
where TKernel : Object, IKernel<TInput>
where TInput : ICloneable
Request Example View Source

Type Parameters

TModel
TKernel
TInput

The ProbabilisticOutputCalibrationBaseTModel, TKernel, TInput type exposes the following members.

Constructors
  NameDescription
Public methodProbabilisticOutputCalibrationBaseTModel, TKernel, TInput
Initializes a new instance of the ProbabilisticOutputCalibrationBaseTModel, TKernel, TInput class.
Public methodProbabilisticOutputCalibrationBaseTModel, TKernel, TInput(TModel)
Initializes a new instance of Platt's Probabilistic Output Calibration algorithm.
Protected methodProbabilisticOutputCalibrationBaseTModel, TKernel, TInput(ISupportVectorMachineDouble, TInput, Int32)
Obsolete.
Top
Properties
  NameDescription
Public propertyIterations
Gets or sets the maximum number of iterations. Default is 100.
Public propertyModel
Gets or sets the classifier being learned.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public propertyStepSize
Gets or sets the minimum step size used during line search. Default is 1e-10.
Public propertyToken
Gets or sets a cancellation token that can be used to stop the learning algorithm while it is running.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public propertyTolerance
Gets or sets the tolerance under which the answer must be found. Default is 1-e5.
Top
Methods
  NameDescription
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodLearn(TInput, Boolean, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Double, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Int32, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Int32, Double)
Learns a model that can map the given inputs to the given outputs.
(Inherited from BinaryLearningBaseTModel, TInput.)
Public methodLearn(TInput, Boolean, Double)
Learns a model that can map the given inputs to the given outputs.
(Overrides BinaryLearningBaseTModel, TInputLearn(TInput, Boolean, Double).)
Public methodLogLikelihood Obsolete.
Obsolete.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodRun Obsolete.
Obsolete.
Public methodRun(Boolean) Obsolete.
Obsolete.
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodToT
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
See Also