LogLogisticDistribution Class 
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class LogLogisticDistribution : UnivariateContinuousDistribution
The LogLogisticDistribution type exposes the following members.
Name  Description  

LogLogisticDistribution 
Constructs a LogLogistic distribution
with unit scale and unit shape.
 
LogLogisticDistribution(Double) 
Constructs a LogLogistic distribution
with the given scale and unit shape.
 
LogLogisticDistribution(Double, Double) 
Constructs a LogLogistic distribution
with the given scale and shape parameters.

Name  Description  

Entropy 
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.)  
Mean 
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.)  
Median 
Gets the median for this distribution.
(Overrides UnivariateContinuousDistributionMedian.)  
Mode 
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.)  
Quartiles 
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.)  
Scale 
Gets the distribution's scale value (α).
 
Shape 
Gets the distribution's shape value (β).
 
StandardDeviation 
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Support 
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.)  
Variance 
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.) 
Name  Description  

Clone 
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)  
ComplementaryDistributionFunction 
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Overrides UnivariateContinuousDistributionComplementaryDistributionFunction(Double).)  
CumulativeHazardFunction 
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
DistributionFunction(Double) 
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionDistributionFunction(Double).)  
DistributionFunction(Double, Double) 
Gets the cumulative distribution function (cdf) for this
distribution in the semiclosed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)  
Equals  Determines whether the specified object is equal to the current object. (Inherited from Object.)  
Finalize  Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.)  
Fit(Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Int32) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Int32, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
FromLocationShape 
Creates a new LogLogisticDistribution using
the locationshape parametrization. In this parametrization,
Beta is taken as 1 / shape.
 
Generate 
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Double) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
GetHashCode  Serves as the default hash function. (Inherited from Object.)  
GetRange 
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)  
GetType  Gets the Type of the current instance. (Inherited from Object.)  
HazardFunction 
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Overrides UnivariateContinuousDistributionHazardFunction(Double).)  
InverseDistributionFunction 
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInverseDistributionFunction(Double).)  
LogCumulativeHazardFunction 
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
LogProbabilityDensityFunction 
Gets the logprobability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
MemberwiseClone  Creates a shallow copy of the current Object. (Inherited from Object.)  
ProbabilityDensityFunction 
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionProbabilityDensityFunction(Double).)  
QuantileDensityFunction 
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Overrides UnivariateContinuousDistributionQuantileDensityFunction(Double).)  
ToString 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(IFormatProvider) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String, IFormatProvider) 
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) 
Name  Description  

HasMethod 
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)  
ToT  Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)  
ToT  Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by Matrix.) 
In probability and statistics, the loglogistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a nonnegative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, for example mortality rate from cancer following diagnosis or treatment. It has also been used in hydrology to model stream flow and precipitation, and in economics as a simple model of the distribution of wealth or income.
The loglogistic distribution is the probability distribution of a random variable whose logarithm has a logistic distribution. It is similar in shape to the lognormal distribution but has heavier tails. Its cumulative distribution function can be written in closed form, unlike that of the lognormal.
References:
This examples shows how to create a LogLogistic distribution and compute some of its properties and characteristics.
// Create a LLD2 distribution with scale = 0.42, shape = 2.2 var log = new LogLogisticDistribution(scale: 0.42, shape: 2.2); double mean = log.Mean; // 0.60592605102976937 double median = log.Median; // 0.42 double mode = log.Mode; // 0.26892249963239817 double var = log.Variance; // 1.4357858982592435 double cdf = log.DistributionFunction(x: 1.4); // 0.93393329906725353 double pdf = log.ProbabilityDensityFunction(x: 1.4); // 0.096960115938100763 double lpdf = log.LogProbabilityDensityFunction(x: 1.4); // 2.3334555609306102 double ccdf = log.ComplementaryDistributionFunction(x: 1.4); // 0.066066700932746525 double icdf = log.InverseDistributionFunction(p: cdf); // 1.4000000000000006 double hf = log.HazardFunction(x: 1.4); // 1.4676094699628273 double chf = log.CumulativeHazardFunction(x: 1.4); // 2.7170904270953637 string str = log.ToString(CultureInfo.InvariantCulture); // LogLogistic(x; α = 0.42, β = 2.2)