LogLogisticDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class LogLogisticDistribution : UnivariateContinuousDistribution
The LogLogisticDistribution type exposes the following members.
Name | Description | |
---|---|---|
LogLogisticDistribution |
Constructs a Log-Logistic distribution with unit scale and unit shape.
| |
LogLogisticDistribution(Double) |
Constructs a Log-Logistic distribution
with the given scale and unit shape.
| |
LogLogisticDistribution(Double, Double) |
Constructs a Log-Logistic distribution
with the given scale and shape parameters.
|
Name | Description | |
---|---|---|
Entropy |
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Mean |
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Overrides UnivariateContinuousDistributionMedian.) | |
Mode |
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.) | |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Scale |
Gets the distribution's scale value (α).
| |
Shape |
Gets the distribution's shape value (β).
| |
StandardDeviation |
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
FromLocationShape |
Creates a new LogLogisticDistribution using
the location-shape parametrization. In this parametrization,
Beta is taken as 1 / shape.
| |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Overrides UnivariateContinuousDistributionHazardFunction(Double).) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Overrides UnivariateContinuousDistributionInnerComplementaryDistributionFunction(Double).) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Overrides UnivariateContinuousDistributionQuantileDensityFunction(Double).) | |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
In probability and statistics, the log-logistic distribution (known as the Fisk distribution in economics) is a continuous probability distribution for a non-negative random variable. It is used in survival analysis as a parametric model for events whose rate increases initially and decreases later, for example mortality rate from cancer following diagnosis or treatment. It has also been used in hydrology to model stream flow and precipitation, and in economics as a simple model of the distribution of wealth or income.
The log-logistic distribution is the probability distribution of a random variable whose logarithm has a logistic distribution. It is similar in shape to the log-normal distribution but has heavier tails. Its cumulative distribution function can be written in closed form, unlike that of the log-normal.
References:
This examples shows how to create a Log-Logistic distribution and compute some of its properties and characteristics.
// Create a LLD2 distribution with scale = 0.42, shape = 2.2 var log = new LogLogisticDistribution(scale: 0.42, shape: 2.2); double mean = log.Mean; // 0.60592605102976937 double median = log.Median; // 0.42 double mode = log.Mode; // 0.26892249963239817 double var = log.Variance; // 1.4357858982592435 double cdf = log.DistributionFunction(x: 1.4); // 0.93393329906725353 double pdf = log.ProbabilityDensityFunction(x: 1.4); // 0.096960115938100763 double lpdf = log.LogProbabilityDensityFunction(x: 1.4); // -2.3334555609306102 double ccdf = log.ComplementaryDistributionFunction(x: 1.4); // 0.066066700932746525 double icdf = log.InverseDistributionFunction(p: cdf); // 1.4000000000000006 double hf = log.HazardFunction(x: 1.4); // 1.4676094699628273 double chf = log.CumulativeHazardFunction(x: 1.4); // 2.7170904270953637 string str = log.ToString(CultureInfo.InvariantCulture); // LogLogistic(x; α = 0.42, β = 2.2)