LogisticDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class LogisticDistribution : UnivariateContinuousDistribution
The LogisticDistribution type exposes the following members.
Name | Description | |
---|---|---|
LogisticDistribution |
Constructs a Logistic distribution
with zero location and unit scale.
| |
LogisticDistribution(Double) |
Constructs a Logistic distribution
with given location and unit scale.
| |
LogisticDistribution(Double, Double) |
Constructs a Logistic distribution
with given location and scale parameters.
|
Name | Description | |
---|---|---|
Entropy |
Gets the entropy for this distribution.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Location |
Gets the location value μ (mu).
| |
Mean |
Gets the location value μ (mu).
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Overrides UnivariateContinuousDistributionMedian.) | |
Mode |
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.) | |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Scale |
Gets the distribution's scale value (s).
| |
StandardDeviation |
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Overrides UnivariateContinuousDistributionQuantileDensityFunction(Double).) | |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The Tukey lambda distribution can be considered a generalization of the logistic distribution since it adds a shape parameter, λ (the Tukey distribution becomes logistic when λ is zero).
References:
This examples shows how to create a Logistic distribution, compute some of its properties and generate a number of random samples from it.
// Create a logistic distribution with μ = 0.42 and scale = 3 var log = new LogisticDistribution(location: 0.42, scale: 1.2); double mean = log.Mean; // 0.42 double median = log.Median; // 0.42 double mode = log.Mode; // 0.42 double var = log.Variance; // 4.737410112522892 double cdf = log.DistributionFunction(x: 1.4); // 0.693528308197921 double pdf = log.ProbabilityDensityFunction(x: 1.4); // 0.17712232827170876 double lpdf = log.LogProbabilityDensityFunction(x: 1.4); // -1.7309146649427332 double ccdf = log.ComplementaryDistributionFunction(x: 1.4); // 0.306471691802079 double icdf = log.InverseDistributionFunction(p: cdf); // 1.3999999999999997 double hf = log.HazardFunction(x: 1.4); // 0.57794025683160088 double chf = log.CumulativeHazardFunction(x: 1.4); // 1.1826298874077226 string str = log.ToString(CultureInfo.InvariantCulture); // Logistic(x; μ = 0.42, scale = 1.2)