Click or drag to resize
Accord.NET (logo)

ShiftedLogLogisticDistribution Class

Shift Log-Logistic distribution.
Inheritance Hierarchy
SystemObject
  Accord.Statistics.DistributionsDistributionBase
    Accord.Statistics.Distributions.UnivariateUnivariateContinuousDistribution
      Accord.Statistics.Distributions.UnivariateShiftedLogLogisticDistribution

Namespace:  Accord.Statistics.Distributions.Univariate
Assembly:  Accord.Statistics (in Accord.Statistics.dll) Version: 3.8.0
Syntax
[SerializableAttribute]
public class ShiftedLogLogisticDistribution : UnivariateContinuousDistribution
Request Example View Source

The ShiftedLogLogisticDistribution type exposes the following members.

Constructors
  NameDescription
Public methodShiftedLogLogisticDistribution
Constructs a Shifted Log-Logistic distribution with zero location, unit scale, and zero shape.
Public methodShiftedLogLogisticDistribution(Double)
Constructs a Shifted Log-Logistic distribution with the given location, unit scale and zero shape.
Public methodShiftedLogLogisticDistribution(Double, Double)
Constructs a Shifted Log-Logistic distribution with the given location and scale and zero shape.
Public methodShiftedLogLogisticDistribution(Double, Double, Double)
Constructs a Shifted Log-Logistic distribution with the given location and scale and zero shape.
Top
Properties
  NameDescription
Public propertyEntropy
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.)
Public propertyLocation
Gets the distribution's location value μ (mu).
Public propertyMean
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.)
Public propertyMedian
Gets the median for this distribution.
(Overrides UnivariateContinuousDistributionMedian.)
Public propertyMode
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.)
Public propertyQuartiles
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.)
Public propertyScale
Gets the distribution's scale value (σ).
Public propertyShape
Gets the distribution's shape value (ξ).
Public propertyStandardDeviation
Gets the Standard Deviation (the square root of the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public propertySupport
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.)
Public propertyVariance
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.)
Top
Methods
  NameDescription
Public methodClone
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)
Public methodComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Public methodCumulativeHazardFunction
Gets the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double)
Gets the cumulative distribution function (cdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double, Double)
Gets the cumulative distribution function (cdf) for this distribution in the semi-closed interval (a; b] given as P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodCode exampleFit(Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Int32)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Int32, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Random)
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Random)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double, Random)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRange
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Gets the hazard function, also known as the failure rate or the conditional failure density function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerDistributionFunction
Gets the cumulative distribution function (cdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).)
Protected methodInnerInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).)
Public methodInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogCumulativeHazardFunction
Gets the log of the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodQuantileDensityFunction
Gets the first derivative of the inverse distribution function (icdf) for this distribution evaluated at probability p.
(Inherited from UnivariateContinuousDistribution.)
Public methodToString
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(IFormatProvider)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String, IFormatProvider)
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodTo(Type)Overloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
Remarks

The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. It has also been called the generalized logistic distribution, but this conflicts with other uses of the term: see generalized logistic distribution.

References:

Examples

This examples shows how to create a Shifted Log-Logistic distribution, compute some of its properties and generate a number of random samples from it.

// Create a LLD3 distribution with μ = 0.0, scale = 0.42, and shape = 0.1
var log = new ShiftedLogLogisticDistribution(location: 0, scale: 0.42, shape: 0.1);

double mean = log.Mean;     // 0.069891101544818923
double median = log.Median; // 0.0
double mode = log.Mode;     // -0.083441677069328604
double var = log.Variance;  // 0.62447259946747213

double cdf = log.DistributionFunction(x: 1.4); // 0.94668863559417671
double pdf = log.ProbabilityDensityFunction(x: 1.4); // 0.090123683626808615
double lpdf = log.LogProbabilityDensityFunction(x: 1.4); // -2.4065722895662613

double ccdf = log.ComplementaryDistributionFunction(x: 1.4); // 0.053311364405823292
double icdf = log.InverseDistributionFunction(p: cdf); // 1.4000000037735139

double hf = log.HazardFunction(x: 1.4); // 1.6905154207038875
double chf = log.CumulativeHazardFunction(x: 1.4); // 2.9316057546685061

string str = log.ToString(CultureInfo.InvariantCulture); // LLD3(x; μ = 0, σ = 0.42, ξ = 0.1)
See Also