Click or drag to resize
Accord.NET (logo)

HiddenMarkovClassifierTDistribution Class

Note: This API is now obsolete.

Inheritance Hierarchy
SystemObject
  Accord.Statistics.Models.MarkovBaseHiddenMarkovClassifierHiddenMarkovModelTDistribution
    Accord.Statistics.Models.MarkovHiddenMarkovClassifierTDistribution

Namespace:  Accord.Statistics.Models.Markov
Assembly:  Accord.Statistics (in Accord.Statistics.dll) Version: 3.8.0
Syntax
[SerializableAttribute]
[ObsoleteAttribute("Please use HiddenMarkovClassifier<TDistribution, TObservation> instead.")]
public class HiddenMarkovClassifier<TDistribution> : BaseHiddenMarkovClassifier<HiddenMarkovModel<TDistribution>>, 
	IEnumerable, IHiddenMarkovClassifier
where TDistribution : IDistribution
Request Example View Source

Type Parameters

TDistribution

The HiddenMarkovClassifierTDistribution type exposes the following members.

Constructors
  NameDescription
Public methodHiddenMarkovClassifierTDistribution(HiddenMarkovModelTDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, Int32, TDistribution)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution, String)
Creates a new Sequence Classifier with the given number of classes.
Public methodHiddenMarkovClassifierTDistribution(Int32, ITopology, TDistribution, String)
Creates a new Sequence Classifier with the given number of classes.
Top
Properties
  NameDescription
Public propertyClasses
Gets the number of classes which can be recognized by this classifier.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public propertyDimension
Gets the number of dimensions of the observations handled by this classifier.
Public propertyItem
Gets the Hidden Markov Model implementation responsible for recognizing each of the classes given the desired class label.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public propertyModels
Gets the collection of models specialized in each class of the sequence classification problem.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public propertyPriors
Gets the prior distribution assumed for the classes.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public propertySensitivity
Gets or sets a value governing the rejection given by a threshold model (if present). Increasing this value will result in higher rejection rates. Default is 1.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public propertyThreshold
Gets or sets the threshold model.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Top
Methods
  NameDescription
Public methodCompute(Array)
Computes the most likely class for a given sequence.
Public methodCompute(Array, Double)
Computes the most likely class for a given sequence.
Public methodCompute(Array, Double)
Computes the most likely class for a given sequence.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetEnumerator
Returns an enumerator that iterates through the models in the classifier.
(Inherited from BaseHiddenMarkovClassifierTModel.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodStatic memberLoad(Stream) Obsolete.
Loads a classifier from a stream.
Public methodStatic memberLoad(String) Obsolete.
Loads a classifier from a file.
Public methodLogLikelihood(Array)
Computes the log-likelihood that a sequence belongs any of the classes in the classifier.
Public methodLogLikelihood(Array, Int32)
Computes the log-likelihood of a sequence belong to a given class according to this classifier.
Public methodLogLikelihood(Array, Int32)
Computes the log-likelihood of a set of sequences belonging to their given respective classes according to this classifier.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodSave(Stream) Obsolete.
Saves the classifier to a stream.
Public methodSave(String) Obsolete.
Saves the classifier to a stream.
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodSetEqualsHiddenMarkovModelTDistribution
Compares two enumerables for set equality. Two enumerables are set equal if they contain the same elements, but not necessarily in the same order.
(Defined by Matrix.)
Public Extension MethodTo(Type)Overloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
See Also