InverseChiSquareDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class InverseChiSquareDistribution : UnivariateContinuousDistribution
The InverseChiSquareDistribution type exposes the following members.
Name | Description | |
---|---|---|
InverseChiSquareDistribution |
Constructs a new Inverse Chi-Square distribution
with the given degrees of freedom.
|
Name | Description | |
---|---|---|
DegreesOfFreedom |
Gets the Degrees of Freedom for this distribution.
| |
Entropy |
Gets the entropy for this distribution.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Mean |
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Mode |
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.) | |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
StandardDeviation |
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
This method is not supported.
(Overrides UnivariateContinuousDistributionFit(Double, Double, IFittingOptions).) | |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
the χ² distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
the χ² distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.) | |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution and its specific importance is that it arises in the application of Bayesian inference to the normal distribution, where it can be used as the prior and posterior distribution for an unknown variance.
The inverse-chi-squared distribution (or inverted-chi-square distribution) is the probability distribution of a random variable whose multiplicative inverse (reciprocal) has a chi-squared distribution. It is also often defined as the distribution of a random variable whose reciprocal divided by its degrees of freedom is a chi-squared distribution. That is, if X has the chi-squared distribution with v degrees of freedom, then according to the first definition, 1/X has the inverse-chi-squared distribution with v degrees of freedom; while according to the second definition, vX has the inverse-chi-squared distribution with v degrees of freedom. Only the first definition is covered by this class.
References:
The following example demonstrates how to create a new inverse χ² distribution with the given degrees of freedom.
// Create a new inverse χ² distribution with 7 d.f. var invchisq = new InverseChiSquareDistribution(degreesOfFreedom: 7); double mean = invchisq.Mean; // 0.2 double median = invchisq.Median; // 6.345811068141737 double var = invchisq.Variance; // 75 double cdf = invchisq.DistributionFunction(x: 6.27); // 0.50860033566176044 double pdf = invchisq.ProbabilityDensityFunction(x: 6.27); // 0.0000063457380298844403 double lpdf = invchisq.LogProbabilityDensityFunction(x: 6.27); // -11.967727146795536 double ccdf = invchisq.ComplementaryDistributionFunction(x: 6.27); // 0.49139966433823956 double icdf = invchisq.InverseDistributionFunction(p: cdf); // 6.2699998329362963 double hf = invchisq.HazardFunction(x: 6.27); // 0.000012913598625327002 double chf = invchisq.CumulativeHazardFunction(x: 6.27); // 0.71049750196765715 string str = invchisq.ToString(); // "Inv-χ²(x; df = 7)"