Click or drag to resize
Accord.NET (logo)

Special Class

Set of special mathematic functions.
Inheritance Hierarchy
SystemObject
  Accord.MathSpecial

Namespace:  Accord.Math
Assembly:  Accord.Math (in Accord.Math.dll) Version: 3.8.0
Syntax
public static class Special
Request Example View Source

The Special type exposes the following members.

Methods
  NameDescription
Public methodStatic memberAcosec
Inverse cosecant.
Public methodStatic memberAcosech
Inverse hyperbolic cosecant.
Public methodStatic memberAcosh
Inverse hyperbolic cos.
Public methodStatic memberAcotan
Inverse cotangent.
Public methodStatic memberAcotanh
Inverse hyperbolic cotangent.
Public methodStatic memberAsec
Inverse secant.
Public methodStatic memberAsech
Inverse hyperbolic secant.
Public methodStatic memberAsinh
Inverse hyperbolic sin.
Public methodStatic memberAtanh
Inverse hyperbolic tangent.
Public methodStatic memberBinomial(Double, Double)
Computes the binomial coefficients C(n,k).
Public methodStatic memberBinomial(Int32, Int32)
Computes the binomial coefficients C(n,k).
Public methodStatic memberBSpline
Computes the Basic Spline of order n
Public methodStatic memberCosec
Cosecant.
Public methodStatic memberCosech
Hyperbolic secant.
Public methodStatic memberCotan
Cotangent.
Public methodStatic memberCotanh
Hyperbolic cotangent.
Public methodStatic memberEpslon
Estimates unit round-off in quantities of size x.
Public methodStatic memberErf
Error function of the specified value.
Public methodStatic memberErfc
Complementary error function of the specified value.
Public methodStatic memberExpm1
Compute exp(x) - 1 without loss of precision for small values of x.
Public methodStatic memberFactorial(Double)
Returns the extended factorial definition of a real number.
Public methodStatic memberFactorial(Int32)
Computes the factorial of a number (n!)
Public methodStatic memberIerf
Inverse error function (Erf(Double).
Public methodStatic memberIerfc
Inverse complemented error function (Erfc(Double).
Public methodStatic memberLog1m
Computes log(1-x) without losing precision for small values of x.
Public methodStatic memberLog1p
Computes log(1+x) without losing precision for small values of x.
Public methodStatic memberLog1pexp
Computes log(1 + exp(x)) without losing precision.
Public methodStatic memberLogBinomial(Double, Double)
Computes the log binomial Coefficients Log[C(n,k)].
Public methodStatic memberLogBinomial(Int32, Int32)
Computes the log binomial Coefficients Log[C(n,k)].
Public methodStatic memberLogDiff
Computes x + y without losing precision using ln(x) and ln(y).
Public methodStatic memberLogFactorial(Double)
Returns the log factorial of a number (ln(n!))
Public methodStatic memberLogFactorial(Int32)
Returns the log factorial of a number (ln(n!))
Public methodStatic memberLogSum(Double)
Computes x + y without losing precision using ln(x) and ln(y).
Public methodStatic memberLogSum(Double, Double)
Computes x + y without losing precision using ln(x) and ln(y).
Public methodStatic memberLogSum(Single, Single)
Computes x + y without losing precision using ln(x) and ln(y).
Public methodStatic memberLogSumExp
Computes sum(x) without losing precision using ln(x_0) ... ln(x_n).
Public methodStatic memberP1evl
Evaluates polynomial of degree N with assumption that coef[N] = 1.0
Public methodStatic memberPolevl
Evaluates polynomial of degree N
Public methodStatic memberSec
Secant.
Public methodStatic memberSech
Hyperbolic secant.
Public methodStatic memberSign
Returns a with the sign of b.
Public methodStatic memberSoftmax(Double)
Computes the Softmax function (also known as normalized Exponencial function) that "squashes"a vector or arbitrary real values into a vector of real values in the range (0, 1) that add up to 1.
Public methodStatic memberSoftmax(Double, Double)
Computes the Softmax function (also known as normalized Exponencial function) that "squashes"a vector or arbitrary real values into a vector of real values in the range (0, 1) that add up to 1.
Top
Remarks
References:
  • Cephes Math Library, http://www.netlib.org/cephes/
  • John D. Cook, http://www.johndcook.com/
See Also