|
|
Special Class |
Namespace: Accord.Math
The Special type exposes the following members.
| Name | Description | |
|---|---|---|
| Acosec |
Inverse cosecant.
| |
| Acosech |
Inverse hyperbolic cosecant.
| |
| Acosh |
Inverse hyperbolic cos.
| |
| Acotan |
Inverse cotangent.
| |
| Acotanh |
Inverse hyperbolic cotangent.
| |
| Asec |
Inverse secant.
| |
| Asech |
Inverse hyperbolic secant.
| |
| Asinh |
Inverse hyperbolic sin.
| |
| Atanh |
Inverse hyperbolic tangent.
| |
| Binomial(Double, Double) |
Computes the binomial coefficients C(n,k).
| |
| Binomial(Int32, Int32) |
Computes the binomial coefficients C(n,k).
| |
| BSpline |
Computes the Basic Spline of order n | |
| Cosec |
Cosecant.
| |
| Cosech |
Hyperbolic secant.
| |
| Cotan |
Cotangent.
| |
| Cotanh |
Hyperbolic cotangent.
| |
| Epslon |
Estimates unit round-off in quantities of size x.
| |
| Erf |
Error function of the specified value.
| |
| Erfc |
Complementary error function of the specified value.
| |
| Expm1 |
Compute exp(x) - 1 without loss of precision for small values of x.
| |
| Factorial(Double) |
Returns the extended factorial definition of a real number.
| |
| Factorial(Int32) |
Computes the factorial of a number (n!)
| |
| Ierf |
Inverse error function (Erf(Double).
| |
| Ierfc |
Inverse complemented error function (Erfc(Double).
| |
| Log1m |
Computes log(1-x) without losing precision for small values of x.
| |
| Log1p |
Computes log(1+x) without losing precision for small values of x.
| |
| Log1pexp |
Computes log(1 + exp(x)) without losing precision.
| |
| LogBinomial(Double, Double) |
Computes the log binomial Coefficients Log[C(n,k)].
| |
| LogBinomial(Int32, Int32) |
Computes the log binomial Coefficients Log[C(n,k)].
| |
| LogDiff |
Computes x + y without losing precision using ln(x) and ln(y).
| |
| LogFactorial(Double) |
Returns the log factorial of a number (ln(n!))
| |
| LogFactorial(Int32) |
Returns the log factorial of a number (ln(n!))
| |
| LogSum(Double) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
| LogSum(Double, Double) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
| LogSum(Single, Single) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
| LogSumExp |
Computes sum(x) without losing precision using ln(x_0) ... ln(x_n).
| |
| P1evl |
Evaluates polynomial of degree N with assumption that coef[N] = 1.0
| |
| Polevl |
Evaluates polynomial of degree N
| |
| Sec |
Secant.
| |
| Sech |
Hyperbolic secant.
| |
| Sign |
Returns a with the sign of b.
| |
| Softmax(Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
| |
| Softmax(Double, Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
|