![]() |
Special Class |
Namespace: Accord.Math
The Special type exposes the following members.
Name | Description | |
---|---|---|
![]() ![]() | Acosec |
Inverse cosecant.
|
![]() ![]() | Acosech |
Inverse hyperbolic cosecant.
|
![]() ![]() | Acosh |
Inverse hyperbolic cos.
|
![]() ![]() | Acotan |
Inverse cotangent.
|
![]() ![]() | Acotanh |
Inverse hyperbolic cotangent.
|
![]() ![]() | Asec |
Inverse secant.
|
![]() ![]() | Asech |
Inverse hyperbolic secant.
|
![]() ![]() | Asinh |
Inverse hyperbolic sin.
|
![]() ![]() | Atanh |
Inverse hyperbolic tangent.
|
![]() ![]() | Binomial(Double, Double) |
Computes the binomial coefficients C(n,k).
|
![]() ![]() | Binomial(Int32, Int32) |
Computes the binomial coefficients C(n,k).
|
![]() ![]() | BSpline |
Computes the Basic Spline of order n |
![]() ![]() | Cosec |
Cosecant.
|
![]() ![]() | Cosech |
Hyperbolic secant.
|
![]() ![]() | Cotan |
Cotangent.
|
![]() ![]() | Cotanh |
Hyperbolic cotangent.
|
![]() ![]() | Epslon |
Estimates unit round-off in quantities of size x.
|
![]() ![]() | Erf |
Error function of the specified value.
|
![]() ![]() | Erfc |
Complementary error function of the specified value.
|
![]() ![]() | Expm1 |
Compute exp(x) - 1 without loss of precision for small values of x.
|
![]() ![]() | Factorial(Double) |
Returns the extended factorial definition of a real number.
|
![]() ![]() | Factorial(Int32) |
Computes the factorial of a number (n!)
|
![]() ![]() | Ierf |
Inverse error function (Erf(Double).
|
![]() ![]() | Ierfc |
Inverse complemented error function (Erfc(Double).
|
![]() ![]() | Log1m |
Computes log(1-x) without losing precision for small values of x.
|
![]() ![]() | Log1p |
Computes log(1+x) without losing precision for small values of x.
|
![]() ![]() | Log1pexp |
Computes log(1 + exp(x)) without losing precision.
|
![]() ![]() | LogBinomial(Double, Double) |
Computes the log binomial Coefficients Log[C(n,k)].
|
![]() ![]() | LogBinomial(Int32, Int32) |
Computes the log binomial Coefficients Log[C(n,k)].
|
![]() ![]() | LogDiff |
Computes x + y without losing precision using ln(x) and ln(y).
|
![]() ![]() | LogFactorial(Double) |
Returns the log factorial of a number (ln(n!))
|
![]() ![]() | LogFactorial(Int32) |
Returns the log factorial of a number (ln(n!))
|
![]() ![]() | LogSum(Double) |
Computes x + y without losing precision using ln(x) and ln(y).
|
![]() ![]() | LogSum(Double, Double) |
Computes x + y without losing precision using ln(x) and ln(y).
|
![]() ![]() | LogSum(Single, Single) |
Computes x + y without losing precision using ln(x) and ln(y).
|
![]() ![]() | LogSumExp |
Computes sum(x) without losing precision using ln(x_0) ... ln(x_n).
|
![]() ![]() | P1evl |
Evaluates polynomial of degree N with assumption that coef[N] = 1.0
|
![]() ![]() | Polevl |
Evaluates polynomial of degree N
|
![]() ![]() | Sec |
Secant.
|
![]() ![]() | Sech |
Hyperbolic secant.
|
![]() ![]() | Sign |
Returns a with the sign of b.
|
![]() ![]() | Softmax(Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
|
![]() ![]() | Softmax(Double, Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
|