| 
               | 
            
              Special Methods | 
          
The Special type exposes the following members.
| Name | Description | |
|---|---|---|
| Acosec | 
              Inverse cosecant.
              | |
| Acosech | 
              Inverse hyperbolic cosecant.
              | |
| Acosh | 
              Inverse hyperbolic cos.
              | |
| Acotan | 
              Inverse cotangent.
              | |
| Acotanh | 
              Inverse hyperbolic cotangent.
              | |
| Asec | 
              Inverse secant.
              | |
| Asech | 
              Inverse hyperbolic secant.
              | |
| Asinh | 
              Inverse hyperbolic sin.
              | |
| Atanh | 
              Inverse hyperbolic tangent.
              | |
| Binomial(Double, Double) | 
              Computes the binomial coefficients C(n,k).
              | |
| Binomial(Int32, Int32) | 
              Computes the binomial coefficients C(n,k).
              | |
| BSpline | 
              Computes the Basic Spline of order n  | |
| Cosec | 
              Cosecant.
              | |
| Cosech | 
              Hyperbolic secant.
              | |
| Cotan | 
              Cotangent.
              | |
| Cotanh | 
              Hyperbolic cotangent.
              | |
| Epslon | 
              Estimates unit round-off in quantities of size x.
              | |
| Erf | 
              Error function of the specified value.
              | |
| Erfc | 
              Complementary error function of the specified value.
              | |
| Expm1 | 
              Compute exp(x) - 1 without loss of precision for small values of x.
              | |
| Factorial(Double) | 
              Returns the extended factorial definition of a real number.
              | |
| Factorial(Int32) | 
              Computes the factorial of a number (n!)
              | |
| Ierf | 
              Inverse error function (Erf(Double).
              | |
| Ierfc | 
              Inverse complemented error function (Erfc(Double).
              | |
| Log1m | 
              Computes log(1-x) without losing precision for small values of x.
              | |
| Log1p | 
              Computes log(1+x) without losing precision for small values of x.
              | |
| Log1pexp | 
              Computes log(1 + exp(x)) without losing precision.
              | |
| LogBinomial(Double, Double) | 
              Computes the log binomial Coefficients Log[C(n,k)].
              | |
| LogBinomial(Int32, Int32) | 
              Computes the log binomial Coefficients Log[C(n,k)].
              | |
| LogDiff | 
              Computes x + y without losing precision using ln(x) and ln(y).
              | |
| LogFactorial(Double) | 
              Returns the log factorial of a number (ln(n!))
              | |
| LogFactorial(Int32) | 
              Returns the log factorial of a number (ln(n!))
              | |
| LogSum(Double) | 
              Computes x + y without losing precision using ln(x) and ln(y).
              | |
| LogSum(Double, Double) | 
              Computes x + y without losing precision using ln(x) and ln(y).
              | |
| LogSum(Single, Single) | 
              Computes x + y without losing precision using ln(x) and ln(y).
              | |
| LogSumExp | 
              Computes sum(x) without losing precision using ln(x_0) ... ln(x_n).
              | |
| P1evl | 
              Evaluates polynomial of degree N with assumption that coef[N] = 1.0
              | |
| Polevl | 
              Evaluates polynomial of degree N
              | |
| Sec | 
              Secant.
              | |
| Sech | 
              Hyperbolic secant.
              | |
| Sign | 
              Returns a with the sign of b. 
              | |
| Softmax(Double) | 
              Computes the Softmax function (also known as normalized Exponencial
              function) that "squashes"a vector or arbitrary real values into a 
              vector of real values in the range (0, 1) that add up to 1.
              | |
| Softmax(Double, Double) | 
              Computes the Softmax function (also known as normalized Exponencial
              function) that "squashes"a vector or arbitrary real values into a 
              vector of real values in the range (0, 1) that add up to 1.
              |