Special Methods |
The Special type exposes the following members.
Name | Description | |
---|---|---|
Acosec |
Inverse cosecant.
| |
Acosech |
Inverse hyperbolic cosecant.
| |
Acosh |
Inverse hyperbolic cos.
| |
Acotan |
Inverse cotangent.
| |
Acotanh |
Inverse hyperbolic cotangent.
| |
Asec |
Inverse secant.
| |
Asech |
Inverse hyperbolic secant.
| |
Asinh |
Inverse hyperbolic sin.
| |
Atanh |
Inverse hyperbolic tangent.
| |
Binomial(Double, Double) |
Computes the binomial coefficients C(n,k).
| |
Binomial(Int32, Int32) |
Computes the binomial coefficients C(n,k).
| |
BSpline |
Computes the Basic Spline of order n | |
Cosec |
Cosecant.
| |
Cosech |
Hyperbolic secant.
| |
Cotan |
Cotangent.
| |
Cotanh |
Hyperbolic cotangent.
| |
Epslon |
Estimates unit round-off in quantities of size x.
| |
Erf |
Error function of the specified value.
| |
Erfc |
Complementary error function of the specified value.
| |
Expm1 |
Compute exp(x) - 1 without loss of precision for small values of x.
| |
Factorial(Double) |
Returns the extended factorial definition of a real number.
| |
Factorial(Int32) |
Computes the factorial of a number (n!)
| |
Ierf |
Inverse error function (Erf(Double).
| |
Ierfc |
Inverse complemented error function (Erfc(Double).
| |
Log1m |
Computes log(1-x) without losing precision for small values of x.
| |
Log1p |
Computes log(1+x) without losing precision for small values of x.
| |
Log1pexp |
Computes log(1 + exp(x)) without losing precision.
| |
LogBinomial(Double, Double) |
Computes the log binomial Coefficients Log[C(n,k)].
| |
LogBinomial(Int32, Int32) |
Computes the log binomial Coefficients Log[C(n,k)].
| |
LogDiff |
Computes x + y without losing precision using ln(x) and ln(y).
| |
LogFactorial(Double) |
Returns the log factorial of a number (ln(n!))
| |
LogFactorial(Int32) |
Returns the log factorial of a number (ln(n!))
| |
LogSum(Double) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
LogSum(Double, Double) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
LogSum(Single, Single) |
Computes x + y without losing precision using ln(x) and ln(y).
| |
LogSumExp |
Computes sum(x) without losing precision using ln(x_0) ... ln(x_n).
| |
P1evl |
Evaluates polynomial of degree N with assumption that coef[N] = 1.0
| |
Polevl |
Evaluates polynomial of degree N
| |
Sec |
Secant.
| |
Sech |
Hyperbolic secant.
| |
Sign |
Returns a with the sign of b.
| |
Softmax(Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
| |
Softmax(Double, Double) |
Computes the Softmax function (also known as normalized Exponencial
function) that "squashes"a vector or arbitrary real values into a
vector of real values in the range (0, 1) that add up to 1.
|