Click or drag to resize
Accord.NET (logo)

MultilabelScoreClassifierBaseTInput Class

Inheritance Hierarchy
SystemObject
  Accord.MachineLearningTransformBaseTInput, Boolean
    Accord.MachineLearningClassifierBaseTInput, Boolean
      Accord.MachineLearningMultilabelClassifierBaseTInput
        Accord.MachineLearningMultilabelScoreClassifierBaseTInput
          Accord.MachineLearningMultilabelLikelihoodClassifierBaseTInput

Namespace:  Accord.MachineLearning
Assembly:  Accord.Statistics (in Accord.Statistics.dll) Version: 3.7.0
Syntax
[SerializableAttribute]
public abstract class MultilabelScoreClassifierBase<TInput> : MultilabelClassifierBase<TInput>, 
	IMultilabelScoreClassifier<TInput>, IMultilabelScoreClassifier<TInput, int>, IMultilabelOutScoreClassifier<TInput, int>, 
	IMultilabelScoreClassifierBase<TInput, int>, IMultilabelRefScoreClassifier<TInput, int[]>, IMultilabelScoreClassifierBase<TInput, int[]>, 
	IClassifier<TInput, int>, IClassifier, ITransform<TInput, int>, 
	ITransform, IMultilabelScoreClassifier<TInput, double>, IMultilabelOutScoreClassifier<TInput, double>, 
	IMultilabelScoreClassifierBase<TInput, double>, IMultilabelRefScoreClassifier<TInput, double[]>, 
	IMultilabelScoreClassifierBase<TInput, double[]>, IClassifier<TInput, double>, 
	ITransform<TInput, double>, IMultilabelRefScoreClassifier<TInput, bool[]>, 
	IMultilabelScoreClassifierBase<TInput, bool[]>, IMultilabelClassifier<TInput>, IMultilabelClassifier<TInput, int[]>, 
	IClassifier<TInput, int[]>, ITransform<TInput, int[]>, 
	IMultilabelClassifier<TInput, bool[]>, IClassifier<TInput, bool[]>, 
	ITransform<TInput, bool[]>, IMultilabelClassifier<TInput, double[]>, 
	IClassifier<TInput, double[]>, ITransform<TInput, double[]>, 
	IMulticlassScoreClassifier<TInput>, IMulticlassScoreClassifier<TInput, int>, IMulticlassOutScoreClassifier<TInput, int>, 
	IMulticlassScoreClassifierBase<TInput, int>, IMulticlassRefScoreClassifier<TInput, int[]>, IMulticlassScoreClassifier<TInput, double>, 
	IMulticlassOutScoreClassifier<TInput, double>, IMulticlassScoreClassifierBase<TInput, double>, 
	IMulticlassRefScoreClassifier<TInput, double[]>, IMulticlassRefScoreClassifier<TInput, bool[]>, 
	IMulticlassClassifier<TInput>, IMulticlassClassifier<TInput, int>, IMulticlassClassifier<TInput, double>
Request Example View Source

Type Parameters

TInput
The data type for the input data. Default is double[].

The MultilabelScoreClassifierBaseTInput type exposes the following members.

Constructors
  NameDescription
Protected methodMultilabelScoreClassifierBaseTInput
Initializes a new instance of the MultilabelScoreClassifierBaseTInput class
Top
Properties
Methods
  NameDescription
Public methodDecide(TInput)
Computes class-label decisions for a given set of input vectors.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodDecide(TInput)
Computes a class-label decision for a given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, TClasses)
Computes a class-label decision for a given input.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodDecide(TInput, Boolean)
Computes class-label decisions for the given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Double)
Computes class-label decisions for the given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Int32)
Computes whether a class label applies to an input vector.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Int32)
Computes class-label decisions for the given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Double)
Computes a class-label decision for a given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Int32)
Computes a class-label decision for a given input.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodDecide(TInput, Double)
Computes a class-label decision for a given input.
Public methodDecide(TInput, Int32)
Computes a class-label decision for a given input.
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32, Boolean)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32, Double)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32, Double)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScores(TInput)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput, Boolean)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Boolean)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Boolean, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Boolean, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Double, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodScores(TInput, Int32, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
Public methodToMulticlass
Views this instance as a multi-class generative classifier.
Public methodToMulticlassT
Views this instance as a multi-class generative classifier.
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Public methodTransform(TInput)
Applies the transformation to an input, producing an associated output.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodTransform(TInput)
Applies the transformation to a set of input vectors, producing an associated set of output vectors.
(Inherited from TransformBaseTInput, TOutput.)
Public methodTransform(TInput, Boolean)
Applies the transformation to an input, producing an associated output.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodTransform(TInput, Boolean)
Applies the transformation to an input, producing an associated output.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
(Inherited from MultilabelClassifierBaseTInput.)
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
(Overrides MultilabelClassifierBaseTInputTransform(TInput, Double).)
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
(Overrides MultilabelClassifierBaseTInputTransform(TInput, Double).)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodToT
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
See Also