Click or drag to resize
Accord.NET (logo)

IMultilabelScoreClassifierTInput Interface

Common interface for score-based multi-label classifiers. A multi-label classifier can predict the occurrence of multiple class labels at once based on a decision score (a real number) computed for each class.

Namespace:  Accord.MachineLearning
Assembly:  Accord (in Accord.dll) Version: 3.8.0
Syntax
public interface IMultilabelScoreClassifier<TInput> : IMultilabelScoreClassifier<TInput, int>, 
	IMultilabelOutScoreClassifier<TInput, int>, IMultilabelScoreClassifierBase<TInput, int>, IMultilabelRefScoreClassifier<TInput, int[]>, 
	IMultilabelScoreClassifierBase<TInput, int[]>, IClassifier<TInput, int>, IClassifier, 
	ITransform<TInput, int>, ICovariantTransform<TInput, int>, ITransform, 
	IMultilabelScoreClassifier<TInput, double>, IMultilabelOutScoreClassifier<TInput, double>, 
	IMultilabelScoreClassifierBase<TInput, double>, IMultilabelRefScoreClassifier<TInput, double[]>, 
	IMultilabelScoreClassifierBase<TInput, double[]>, IClassifier<TInput, double>, 
	ITransform<TInput, double>, ICovariantTransform<TInput, double>, 
	IMultilabelRefScoreClassifier<TInput, bool[]>, IMultilabelScoreClassifierBase<TInput, bool[]>, 
	IMultilabelClassifier<TInput>, IMultilabelClassifier<TInput, int[]>, IClassifier<TInput, int[]>, 
	ITransform<TInput, int[]>, ICovariantTransform<TInput, int[]>, 
	IMultilabelClassifier<TInput, bool[]>, IClassifier<TInput, bool[]>, 
	ITransform<TInput, bool[]>, ICovariantTransform<TInput, bool[]>, 
	IMultilabelClassifier<TInput, double[]>, IClassifier<TInput, double[]>, 
	ITransform<TInput, double[]>, ICovariantTransform<TInput, double[]>
Request Example View Source

Type Parameters

TInput
The data type for the input data. Default is double[].

The IMultilabelScoreClassifierTInput type exposes the following members.

Properties
  NameDescription
Public propertyNumberOfClasses
Gets or sets the number of classes expected and recognized by the classifier.
(Inherited from IClassifier.)
Public propertyNumberOfInputs
Gets or sets the number of inputs accepted by the model.
(Inherited from ITransform.)
Public propertyNumberOfOutputs
Gets or sets the number of outputs generated by the model.
(Inherited from ITransform.)
Top
Methods
  NameDescription
Public methodDecide(TInput)
Computes a class-label decision for a given input.
(Inherited from IClassifierTInput, TClasses.)
Public methodDecide(TInput)
Computes class-label decisions for each vector in the given input.
(Inherited from IClassifierTInput, TClasses.)
Public methodDecide(TInput, TClasses)
Computes class-label decisions for each vector in the given input.
(Inherited from IClassifierTInput, TClasses.)
Public methodDecide(TInput, TClasses)
Computes class-label decisions for the given input.
(Inherited from IMultilabelClassifierTInput, TClasses.)
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between the given input vector and a given classIndex.
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between each of the given input vectors and the given classIndex.
Public methodScore(TInput, Int32)
Computes a numerical score measuring the association between each of the given input vectors and the given classIndex.
Public methodScore(TInput, Int32, Double)
Computes a numerical score measuring the association between each of the given input vectors and the given classIndex.
Public methodScore(TInput, Int32, Double)
Computes a numerical score measuring the association between each of the given input vectors and the given classIndex.
Public methodScores(TInput)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput)
Computes a numerical score measuring the association between each of the given input vectors and each possible class.
Public methodScores(TInput, TClasses)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
(Inherited from IMultilabelOutScoreClassifierTInput, TClasses.)
Public methodScores(TInput, Double)
Computes a numerical score measuring the association between the given input vector and each class.
Public methodScores(TInput, Double)
Computes a numerical score measuring the association between each of the given input vectors and each possible class.
Public methodScores(TInput, TClasses)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
(Inherited from IMultilabelScoreClassifierBaseTInput, TClasses.)
Public methodScores(TInput, TClasses, Double)
Predicts a class label vector for the given input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
(Inherited from IMultilabelOutScoreClassifierTInput, TClasses.)
Public methodScores(TInput, TClasses, Double)
Predicts a class label vector for each input vector, returning a numerical score measuring the strength of association of the input vector to each of the possible classes.
(Inherited from IMultilabelScoreClassifierBaseTInput, TClasses.)
Public methodToMulticlass
Views this instance as a multi-class score-based classifier.
Public methodToMulticlassT
Views this instance as a multi-class score-based classifier.
Public methodTransform(TInput)
Applies the transformation to an input, producing an associated output.
(Inherited from ICovariantTransformTInput, TOutput.)
Public methodTransform(TInput)
Applies the transformation to a set of input vectors, producing an associated set of output vectors.
(Inherited from ICovariantTransformTInput, TOutput.)
Public methodTransform(TInput, TOutput)
Applies the transformation to a set of input vectors, producing an associated set of output vectors.
(Inherited from ITransformTInput, TOutput.)
Top
See Also