TimeSeriesPredictionFitness Class |
Namespace: Accord.Genetic
The TimeSeriesPredictionFitness type exposes the following members.
Name | Description | |
---|---|---|
TimeSeriesPredictionFitness |
Initializes a new instance of the TimeSeriesPredictionFitness class.
|
Name | Description | |
---|---|---|
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Evaluate |
Evaluates chromosome.
| |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ToString | Returns a string that represents the current object. (Inherited from Object.) | |
Translate |
Translates genotype to phenotype.
|
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
The fitness function calculates fitness value of GP and GEP chromosomes with the aim of solving times series prediction problem using sliding window method. The fitness function's value is computed as:
100.0 / ( error + 1 )
Sample usage:
// number of points from the past used to predict new one int windowSize = 5; // time series to predict double[] data = new double[13] { 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79 }; // constants double[] constants = new double[10] { 1, 2, 3, 5, 7, 11, 13, 17, 19, 23 }; // create population Population population = new Population( 100, new GPTreeChromosome( new SimpleGeneFunction( windowSize + constants.Length ) ), new TimeSeriesPredictionFitness( data, windowSize, 1, constants ), new EliteSelection( ) ); // run one epoch of the population population.RunEpoch( );