InferenceSystem Class |
Namespace: Accord.Fuzzy
The InferenceSystem type exposes the following members.
Name | Description | |
---|---|---|
InferenceSystem(Database, IDefuzzifier) |
Initializes a new Fuzzy InferenceSystem.
| |
InferenceSystem(Database, IDefuzzifier, INorm, ICoNorm) |
Initializes a new Fuzzy InferenceSystem.
|
Name | Description | |
---|---|---|
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Evaluate |
Executes the fuzzy inference, obtaining a numerical output for a choosen output
linguistic variable.
| |
ExecuteInference |
Executes the fuzzy inference, obtaining the FuzzyOutput of the system for the required
LinguisticVariable.
| |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetLinguisticVariable |
Gets one of the LinguisticVariable of the Database.
| |
GetRule |
Gets one of the Rules of the Rulebase.
| |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
NewRule | ||
SetInput |
Sets a numerical input for one of the linguistic variables of the Database.
| |
ToString | Returns a string that represents the current object. (Inherited from Object.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
A Fuzzy Inference System is a model capable of executing fuzzy computing. It is mainly composed by a Database with the linguistic variables (see LinguisticVariable) and a Rulebase with the fuzzy rules (see Rule) that represent the behavior of the system. The typical operation of a Fuzzy Inference System is:
The following sample usage is a Fuzzy Inference System that controls an auto guided vehicle avoing frontal collisions:
// linguistic labels (fuzzy sets) that compose the distances FuzzySet fsNear = new FuzzySet( "Near", new TrapezoidalFunction( 15, 50, TrapezoidalFunction.EdgeType.Right ) ); FuzzySet fsMedium = new FuzzySet( "Medium", new TrapezoidalFunction( 15, 50, 60, 100 ) ); FuzzySet fsFar = new FuzzySet( "Far", new TrapezoidalFunction( 60, 100, TrapezoidalFunction.EdgeType.Left ) ); // front distance (input) LinguisticVariable lvFront = new LinguisticVariable( "FrontalDistance", 0, 120 ); lvFront.AddLabel( fsNear ); lvFront.AddLabel( fsMedium ); lvFront.AddLabel( fsFar ); // linguistic labels (fuzzy sets) that compose the angle FuzzySet fsZero = new FuzzySet( "Zero", new TrapezoidalFunction( -10, 5, 5, 10 ) ); FuzzySet fsLP = new FuzzySet( "LittlePositive", new TrapezoidalFunction( 5, 10, 20, 25 ) ); FuzzySet fsP = new FuzzySet( "Positive", new TrapezoidalFunction( 20, 25, 35, 40 ) ); FuzzySet fsVP = new FuzzySet( "VeryPositive", new TrapezoidalFunction( 35, 40, TrapezoidalFunction.EdgeType.Left ) ); // angle LinguisticVariable lvAngle = new LinguisticVariable( "Angle", -10, 50 ); lvAngle.AddLabel( fsZero ); lvAngle.AddLabel( fsLP ); lvAngle.AddLabel( fsP ); lvAngle.AddLabel( fsVP ); // the database Database fuzzyDB = new Database( ); fuzzyDB.AddVariable( lvFront ); fuzzyDB.AddVariable( lvAngle ); // creating the inference system InferenceSystem IS = new InferenceSystem( fuzzyDB, new CentroidDefuzzifier( 1000 ) ); // going Straight IS.NewRule( "Rule 1", "IF FrontalDistance IS Far THEN Angle IS Zero" ); // Turning Left IS.NewRule( "Rule 2", "IF FrontalDistance IS Near THEN Angle IS Positive" ); ... // inference section // setting inputs IS.SetInput( "FrontalDistance", 20 ); // getting outputs try { float newAngle = IS.Evaluate( "Angle" ); } catch ( Exception ) { ... }