StochasticGradientDescent Properties |
The StochasticGradientDescent type exposes the following members.
Name | Description | |
---|---|---|
Iterations | Obsolete.
Please use MaxIterations instead.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
Kernel |
Gets or sets the kernel function use to create a
kernel Support Vector Machine.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
Lambda |
Gets or sets the lambda regularization term. Default is 0.5.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
LearningRate |
Gets or sets the learning rate for the SGD algorithm.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
Loss |
Gets or sets the loss function to be used.
Default is to use the LogisticLoss.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
MaxIterations |
Gets or sets the number of iterations that should be
performed by the algorithm when calling Learn(TInput, Boolean, Double).
Default is 0 (iterate until convergence).
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) | |
Model |
Gets or sets the classifier being learned.
(Inherited from BinaryLearningBaseTModel, TInput.) | |
Token |
Gets or sets a cancellation token that can be used to
stop the learning algorithm while it is running.
(Inherited from BinaryLearningBaseTModel, TInput.) | |
Tolerance |
Gets or sets the maximum relative change in the watched value
after an iteration of the algorithm used to detect convergence.
Default is 1e-5.
(Inherited from BaseStochasticGradientDescentTModel, TKernel, TInput, TLoss.) |