BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss Properties |
The BaseAveragedStochasticGradientDescentTModel, TKernel, TInput, TLoss generic type exposes the following members.
Name | Description | |
---|---|---|
CurrentEpoch |
Gets or sets the current epoch counter.
| |
Iterations | Obsolete.
Please use MaxIterations instead.
| |
Kernel |
Gets or sets the kernel function use to create a
kernel Support Vector Machine.
| |
Lambda |
Gets or sets the lambda regularization term. Default is 0.5.
| |
LearningRate |
Gets or sets the learning rate for the SGD algorithm.
| |
Loss |
Gets or sets the loss function to be used.
Default is to use the LogisticLoss.
| |
MaxIterations |
Gets or sets the number of iterations that should be
performed by the algorithm when calling Learn(TInput, Boolean, Double).
Default is 0 (iterate until convergence).
| |
Model |
Gets or sets the classifier being learned.
(Inherited from BinaryLearningBaseTModel, TInput.) | |
ParallelOptions |
Gets or sets the parallelization options for this algorithm.
| |
Token |
Gets or sets a cancellation token that can be used
to cancel the algorithm while it is running.
(Overrides BinaryLearningBaseTModel, TInputToken.) | |
Tolerance |
Gets or sets the maximum relative change in the watched value
after an iteration of the algorithm used to detect convergence.
Default is 1e-3. If set to 0, the loss will not be computed
during learning and execution will be faster.
|