MeanShift Properties |
The MeanShift type exposes the following members.
Name | Description | |
---|---|---|
Bandwidth |
Gets or sets the bandwidth (radius, or smoothness)
parameter to be used in the mean-shift algorithm.
| |
Clusters |
Gets the clusters found by Mean Shift.
| |
ComputeLabels |
Gets or sets whether cluster labels should be computed
at the end of the learning iteration. Setting to False
might save a few computations in case they are not necessary.
| |
ComputeProportions |
Gets or sets whether cluster proportions should be computed
at the end of the learning iteration. Setting to False
might save a few computations in case they are not necessary.
| |
Dimension |
Gets the dimension of the samples being
modeled by this clustering algorithm.
| |
Distance |
Gets or sets the IMetricT used to
compute distances between points in the clustering.
| |
Kernel |
Gets or sets the density kernel to be used in the algorithm.
Default is to use the UniformKernel.
| |
Maximum |
Gets or sets the maximum number of neighbors which should be
used to determine the direction of the mean-shift during the
computations. Default is zero (unlimited number of neighbors).
| |
MaxIterations |
Gets or sets the maximum number of iterations to
be performed by the method. If set to zero, no
iteration limit will be imposed. Default is 0.
| |
ParallelOptions |
Gets or sets the parallelization options for this algorithm.
(Inherited from ParallelLearningBase.) | |
Token |
Gets or sets a cancellation token that can be used
to cancel the algorithm while it is running.
(Inherited from ParallelLearningBase.) | |
Tolerance |
Gets or sets the relative convergence threshold
for stopping the algorithm. Default is 1e-3.
| |
UseAgglomeration |
Gets or sets whether to use the agglomeration shortcut,
meaning the algorithm will stop early when it detects that
a sample is going to follow the same path as another sample
when running in parallel.
| |
UseParallelProcessing | Obsolete.
Gets or sets whether the algorithm can use parallel
processing to speedup computations. Enabling parallel
processing can, however, result in different results
at each run.
| |
UseSeeding |
Gets or sets whether to use seeding to initialize the algorithm.
With seeding, new points will be sampled from an uniform grid in
the range of the input points to be used as seeds. Otherwise, the
input points themselves will be used as the initial centroids for
the algorithm.
|