Click or drag to resize
Accord.NET (logo)

EvolutionaryLearning Constructor (ActivationNetwork, Int32, IRandomNumberGeneratorDouble, IRandomNumberGeneratorDouble, IRandomNumberGeneratorDouble, ISelectionMethod, Double, Double, Double)

Initializes a new instance of the EvolutionaryLearning class.

Namespace:  Accord.Neuro.Learning
Assembly:  Accord.Neuro (in Accord.Neuro.dll) Version: 3.8.0
Syntax
public EvolutionaryLearning(
	ActivationNetwork activationNetwork,
	int populationSize,
	IRandomNumberGenerator<double> chromosomeGenerator,
	IRandomNumberGenerator<double> mutationMultiplierGenerator,
	IRandomNumberGenerator<double> mutationAdditionGenerator,
	ISelectionMethod selectionMethod,
	double crossOverRate,
	double mutationRate,
	double randomSelectionRate
)
Request Example View Source

Parameters

activationNetwork
Type: Accord.NeuroActivationNetwork
Activation network to be trained.
populationSize
Type: SystemInt32
Size of genetic population.
chromosomeGenerator
Type: Accord.Math.RandomIRandomNumberGeneratorDouble
Random numbers generator used for initialization of genetic population representing neural network's weights and thresholds (see chromosomeGenerator).
mutationMultiplierGenerator
Type: Accord.Math.RandomIRandomNumberGeneratorDouble
Random numbers generator used to generate random factors for multiplication of network's weights and thresholds during genetic mutation (ses mutationMultiplierGenerator.)
mutationAdditionGenerator
Type: Accord.Math.RandomIRandomNumberGeneratorDouble
Random numbers generator used to generate random values added to neural network's weights and thresholds during genetic mutation (see mutationAdditionGenerator).
selectionMethod
Type: Accord.GeneticISelectionMethod
Method of selection best chromosomes in genetic population.
crossOverRate
Type: SystemDouble
Crossover rate in genetic population (see CrossoverRate).
mutationRate
Type: SystemDouble
Mutation rate in genetic population (see MutationRate).
randomSelectionRate
Type: SystemDouble
Rate of injection of random chromosomes during selection in genetic population (see RandomSelectionPortion).
See Also