NonlinearRegression Class |
Namespace: Accord.Statistics.Models.Regression
[SerializableAttribute] public class NonlinearRegression : TransformBase<double[], double>, ICloneable
The NonlinearRegression type exposes the following members.
Name | Description | |
---|---|---|
NonlinearRegression(Int32, RegressionFunction) |
Initializes a new instance of the NonlinearRegression class.
| |
NonlinearRegression(Int32, RegressionFunction, RegressionGradientFunction) |
Initializes a new instance of the NonlinearRegression class.
|
Name | Description | |
---|---|---|
Coefficients |
Gets the regression coefficients.
| |
Function |
Gets the model function, mapping inputs to
outputs given a suitable parameter vector.
| |
Gradient |
Gets or sets a function that computes the gradient of the
Function in respect to the Coefficients.
| |
NumberOfInputs |
Gets the number of inputs accepted by the model.
(Inherited from TransformBaseTInput, TOutput.) | |
NumberOfOutputs |
Gets the number of outputs generated by the model.
(Inherited from TransformBaseTInput, TOutput.) | |
StandardErrors |
Gets the standard errors for the regression coefficients.
|
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
| |
Compute | Obsolete.
Computes the model output for the given input vector.
| |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ToString | Returns a string that represents the current object. (Inherited from Object.) | |
Transform(TInput) |
Applies the transformation to a set of input vectors,
producing an associated set of output vectors.
(Inherited from TransformBaseTInput, TOutput.) | |
Transform(Double) |
Applies the transformation to an input, producing an associated output.
(Overrides TransformBaseTInput, TOutputTransform(TInput).) | |
Transform(TInput, TOutput) |
Applies the transformation to an input, producing an associated output.
(Inherited from TransformBaseTInput, TOutput.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
The first example shows how to fit a non-linear regression with LevenbergMarquardt.
// Suppose we would like to map the continuous values in the // second column to the integer values in the first column. double[,] data = { { -40, -21142.1111111111 }, { -30, -21330.1111111111 }, { -20, -12036.1111111111 }, { -10, 7255.3888888889 }, { 0, 32474.8888888889 }, { 10, 32474.8888888889 }, { 20, 9060.8888888889 }, { 30, -11628.1111111111 }, { 40, -15129.6111111111 }, }; // Extract inputs and outputs double[][] inputs = data.GetColumn(0).ToJagged(); double[] outputs = data.GetColumn(1); // Create a Nonlinear regression using var nls = new NonlinearLeastSquares() { NumberOfParameters = 3, // Initialize to some random values StartValues = new[] { 4.2, 0.3, 1 }, // Let's assume a quadratic model function: ax² + bx + c Function = (w, x) => w[0] * x[0] * x[0] + w[1] * x[0] + w[2], // Derivative in respect to the weights: Gradient = (w, x, r) => { r[0] = w[0]* w[0]; // w.r.t a: a² // https://www.wolframalpha.com/input/?i=diff+ax²+%2B+bx+%2B+c+w.r.t.+a r[1] = w[0]; // w.r.t b: b // https://www.wolframalpha.com/input/?i=diff+ax²+%2B+bx+%2B+c+w.r.t.+b r[2] = 1; // w.r.t c: 1 // https://www.wolframalpha.com/input/?i=diff+ax²+%2B+bx+%2B+c+w.r.t.+c }, Algorithm = new LevenbergMarquardt() { MaxIterations = 100, Tolerance = 0 } }; var regression = nls.Learn(inputs, outputs); // Use the function to compute the input values double[] predict = regression.Transform(inputs);
The second example shows how to fit a non-linear regression with GaussNewton.
// Suppose we would like to map the continuous values in the // second row to the integer values in the first row. double[,] data = { { 0.03, 0.1947, 0.425, 0.626, 1.253, 2.500, 3.740 }, { 0.05, 0.127, 0.094, 0.2122, 0.2729, 0.2665, 0.3317} }; // Extract inputs and outputs double[][] inputs = data.GetRow(0).ToJagged(); double[] outputs = data.GetRow(1); // Create a Nonlinear regression using var nls = new NonlinearLeastSquares() { // Initialize to some random values StartValues = new[] { 0.9, 0.2 }, // Let's assume a quadratic model function: ax² + bx + c Function = (w, x) => (w[0] * x[0]) / (w[1] + x[0]), // Derivative in respect to the weights: Gradient = (w, x, r) => { r[0] = -((-x[0]) / (w[1] + x[0])); r[1] = -((w[0] * x[0]) / Math.Pow(w[1] + x[0], 2)); }, Algorithm = new GaussNewton() { MaxIterations = 0, Tolerance = 1e-5 } }; var regression = nls.Learn(inputs, outputs); // Use the function to compute the input values double[] predict = regression.Transform(inputs);