Click or drag to resize
Accord.NET (logo)

WrappedCauchyDistribution Class

Wrapped Cauchy Distribution.
Inheritance Hierarchy
SystemObject
  Accord.Statistics.DistributionsDistributionBase
    Accord.Statistics.Distributions.UnivariateUnivariateContinuousDistribution
      Accord.Statistics.Distributions.UnivariateWrappedCauchyDistribution

Namespace:  Accord.Statistics.Distributions.Univariate
Assembly:  Accord.Statistics (in Accord.Statistics.dll) Version: 3.7.0
Syntax
public class WrappedCauchyDistribution : UnivariateContinuousDistribution, 
	IFittableDistribution<double, CauchyOptions>, IFittable<double, CauchyOptions>, 
	IFittable<double>, IFittableDistribution<double>, IDistribution<double>, 
	IDistribution, ICloneable
Request Example View Source

The WrappedCauchyDistribution type exposes the following members.

Constructors
  NameDescription
Public methodWrappedCauchyDistribution
Initializes a new instance of the WrappedCauchyDistribution class.
Top
Properties
Methods
  NameDescription
Public methodClone
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)
Public methodComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Public methodCumulativeHazardFunction
Gets the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double)
Gets the cumulative distribution function (cdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double, Double)
Gets the cumulative distribution function (cdf) for this distribution in the semi-closed interval (a; b] given as P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodFit(Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Int32)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Int32, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double, CauchyOptions)
Fits the underlying distribution to a given set of observations.
Public methodFit(Double, Int32, CauchyOptions)
Fits the underlying distribution to a given set of observations.
Public methodGenerate
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Random)
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Random)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double, Random)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRange
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Gets the hazard function, also known as the failure rate or the conditional failure density function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerDistributionFunction
Not supported.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).)
Protected methodInnerInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).)
Protected methodInnerProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).)
Public methodInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogCumulativeHazardFunction
Gets the log of the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodQuantileDensityFunction
Gets the first derivative of the inverse distribution function (icdf) for this distribution evaluated at probability p.
(Inherited from UnivariateContinuousDistribution.)
Public methodToString
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(IFormatProvider)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String, IFormatProvider)
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodToT
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
Remarks

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

The wrapped Cauchy distribution is often found in the field of spectroscopy where it is used to analyze diffraction patterns (e.g. see Fabry–Pérot interferometer)

.

References:

Examples
// Create a Wrapped Cauchy distribution with μ = 0.42, γ = 3
var dist = new WrappedCauchyDistribution(mu: 0.42, gamma: 3);

// Common measures
double mean = dist.Mean;     // 0.42
double var = dist.Variance;  // 0.950212931632136

// Probability density functions
double pdf = dist.ProbabilityDensityFunction(x: 0.42); // 0.1758330112785475
double lpdf = dist.LogProbabilityDensityFunction(x: 0.42); // -1.7382205338929015

// String representation
string str = dist.ToString(); // "WrappedCauchy(x; μ = 0,42, γ = 3)"
See Also