TrapezoidalDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class TrapezoidalDistribution : UnivariateContinuousDistribution
The TrapezoidalDistribution type exposes the following members.
Name | Description | |
---|---|---|
TrapezoidalDistribution(Double, Double, Double, Double) |
Creates a new trapezoidal distribution.
| |
TrapezoidalDistribution(Double, Double, Double, Double, Double, Double) |
Creates a new trapezoidal distribution.
| |
TrapezoidalDistribution(Double, Double, Double, Double, Double, Double, Double) |
Creates a new trapezoidal distribution.
|
Name | Description | |
---|---|---|
Entropy |
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Mean |
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Mode |
Gets the mode for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
StandardDeviation |
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.) | |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
Trapezoidal distributions have been used in many areas and studied under varying scopes, such as in the excellent work of (van Dorp and Kotz, 2003), risk analysis (Pouliquen, 1970) and (Powell and Wilson, 1997), fuzzy set theory (Chen and Hwang, 1992), applied phyisics, and biomedical applications (Flehinger and Kimmel, 1987).
Trapezoidal distributions are appropriate for modeling events that are comprised by three different stages: one growth stage, where probability grows up until a plateau is reached; a stability stage, where probability stays more or less the same; and a decline stage, where probability decreases until zero (van Dorp and Kotz, 2003).
References:
The following example shows how to create and test the main characteristics of a Trapezoidal distribution given its parameters:
// Create a new trapezoidal distribution with linear growth between // 0 and 2, stability between 2 and 8, and decrease between 8 and 10. // // // +-----------+ // /| |\ // / | | \ // / | | \ // -------+---+-----------+---+------- // ... 0 2 4 6 8 10 ... // var trapz = new TrapezoidalDistribution(a: 0, b: 2, c: 8, d: 10, n1: 1, n3: 1); double mean = trapz.Mean; // 2.25 double median = trapz.Median; // 3.0 double mode = trapz.Mode; // 3.1353457616424696 double var = trapz.Variance; // 17.986666666666665 double cdf = trapz.DistributionFunction(x: 1.4); // 0.13999999999999999 double pdf = trapz.ProbabilityDensityFunction(x: 1.4); // 0.10000000000000001 double lpdf = trapz.LogProbabilityDensityFunction(x: 1.4); // -2.3025850929940455 double ccdf = trapz.ComplementaryDistributionFunction(x: 1.4); // 0.85999999999999999 double icdf = trapz.InverseDistributionFunction(p: cdf); // 1.3999999999999997 double hf = trapz.HazardFunction(x: 1.4); // 0.11627906976744187 double chf = trapz.CumulativeHazardFunction(x: 1.4); // 0.15082288973458366 string str = trapz.ToString(CultureInfo.InvariantCulture); // Trapezoidal(x; a=0, b=2, c=8, d=10, n1=1, n3=1, α = 1)