PowerNormalDistribution Class 
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class PowerNormalDistribution : UnivariateContinuousDistribution
The PowerNormalDistribution type exposes the following members.
Name  Description  

PowerNormalDistribution 
Constructs a Power Normal distribution
with given power (shape) parameter.

Name  Description  

Entropy 
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.)  
Mean 
Not supported.
(Overrides UnivariateContinuousDistributionMean.)  
Median 
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.)  
Mode 
Not supported.
(Overrides UnivariateContinuousDistributionMode.)  
Power 
Gets the distribution shape (power) parameter.
 
Quartiles 
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.)  
StandardDeviation 
Not supported.
(Overrides UnivariateContinuousDistributionStandardDeviation.)  
Support 
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.)  
Variance 
Not supported.
(Overrides UnivariateContinuousDistributionVariance.) 
Name  Description  

Clone 
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)  
ComplementaryDistributionFunction 
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)  
CumulativeHazardFunction 
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
DistributionFunction(Double) 
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
DistributionFunction(Double, Double) 
Gets the cumulative distribution function (cdf) for this
distribution in the semiclosed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)  
Equals  Determines whether the specified object is equal to the current object. (Inherited from Object.)  
Finalize  Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.)  
Fit(Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Int32) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Int32, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Generate 
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Random) 
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Double) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Random) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Double, Random) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
GetHashCode  Serves as the default hash function. (Inherited from Object.)  
GetRange 
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)  
GetType  Gets the Type of the current instance. (Inherited from Object.)  
HazardFunction 
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
InnerComplementaryDistributionFunction 
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)  
InnerDistributionFunction 
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).)  
InnerInverseDistributionFunction 
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).)  
InnerLogProbabilityDensityFunction 
Gets the logprobability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).)  
InnerProbabilityDensityFunction 
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).)  
InverseDistributionFunction 
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)  
LogCumulativeHazardFunction 
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
LogProbabilityDensityFunction 
Gets the logprobability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
MemberwiseClone  Creates a shallow copy of the current Object. (Inherited from Object.)  
ProbabilityDensityFunction 
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
QuantileDensityFunction 
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.)  
ToString 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(IFormatProvider) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String, IFormatProvider) 
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) 
Name  Description  

HasMethod 
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)  
IsEqual  Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices. (Defined by Matrix.)  
ToT 
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) 
This example shows how to create a Power Normal distribution and compute some of its properties.
// Create a new PowerNormal distribution with p = 4.2 var pnormal = new PowerNormalDistribution(power: 4.2); double cdf = pnormal.DistributionFunction(x: 1.4); // 0.99997428721920678 double pdf = pnormal.ProbabilityDensityFunction(x: 1.4); // 0.00020022645890003279 double lpdf = pnormal.LogProbabilityDensityFunction(x: 1.4); // 0.20543269836728234 double ccdf = pnormal.ComplementaryDistributionFunction(x: 1.4); // 0.000025712780793218926 double icdf = pnormal.InverseDistributionFunction(p: cdf); // 1.3999999999998953 double hf = pnormal.HazardFunction(x: 1.4); // 7.7870402470368854 double chf = pnormal.CumulativeHazardFunction(x: 1.4); // 10.568522382550167 string str = pnormal.ToString(); // PND(x; p = 4.2)