PowerLognormalDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class PowerLognormalDistribution : UnivariateContinuousDistribution
The PowerLognormalDistribution type exposes the following members.
Name | Description | |
---|---|---|
PowerLognormalDistribution |
Constructs a Power Lognormal distribution
with the given power and shape parameters.
|
Name | Description | |
---|---|---|
Entropy |
Not supported.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Mean |
Not supported.
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Mode |
Not supported.
(Overrides UnivariateContinuousDistributionMode.) | |
Power |
Gets the distribution's power parameter (p).
| |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Shape |
Gets the distribution's shape parameter sigma (σ).
| |
StandardDeviation |
Not supported.
(Overrides UnivariateContinuousDistributionStandardDeviation.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Not supported.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionCumulativeHazardFunction(Double).) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Overrides UnivariateContinuousDistributionHazardFunction(Double).) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Overrides UnivariateContinuousDistributionInnerComplementaryDistributionFunction(Double).) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.) | |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
This example shows how to create a Power Lognormal distribution and compute some of its properties.
// Create a Power-Lognormal distribution with p = 4.2 and s = 1.2 var plog = new PowerLognormalDistribution(power: 4.2, shape: 1.2); double cdf = plog.DistributionFunction(x: 1.4); // 0.98092157745191766 double pdf = plog.ProbabilityDensityFunction(x: 1.4); // 0.046958580233533977 double lpdf = plog.LogProbabilityDensityFunction(x: 1.4); // -3.0584893374471496 double ccdf = plog.ComplementaryDistributionFunction(x: 1.4); // 0.019078422548082351 double icdf = plog.InverseDistributionFunction(p: cdf); // 1.4 double hf = plog.HazardFunction(x: 1.4); // 10.337649063164642 double chf = plog.CumulativeHazardFunction(x: 1.4); // 3.9591972920568446 string str = plog.ToString(CultureInfo.InvariantCulture); // PLD(x; p = 4.2, σ = 1.2)