LognormalDistribution Class |
Namespace: Accord.Statistics.Distributions.Univariate
[SerializableAttribute] public class LognormalDistribution : UnivariateContinuousDistribution, IFittableDistribution<double, NormalOptions>, IFittable<double, NormalOptions>, IFittable<double>, IFittableDistribution<double>, IDistribution<double>, IDistribution, ICloneable, ISampleableDistribution<double>, IRandomNumberGenerator<double>, IFormattable
The LognormalDistribution type exposes the following members.
Name | Description | |
---|---|---|
LognormalDistribution |
Constructs a Log-Normal (Galton) distribution
with zero location and unit shape.
| |
LognormalDistribution(Double) |
Constructs a Log-Normal (Galton) distribution
with given location and unit shape.
| |
LognormalDistribution(Double, Double) |
Constructs a Log-Normal (Galton) distribution
with given mean and standard deviation.
|
Name | Description | |
---|---|---|
Entropy |
Gets the Entropy for this Log-Normal distribution.
(Overrides UnivariateContinuousDistributionEntropy.) | |
Location |
Location parameter μ (mu) of the log-normal distribution.
| |
Mean |
Gets the Mean for this Log-Normal distribution.
(Overrides UnivariateContinuousDistributionMean.) | |
Median |
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Mode |
Gets the mode for this distribution.
(Overrides UnivariateContinuousDistributionMode.) | |
Quartiles |
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Shape |
Shape parameter σ (sigma) of
the log-normal distribution.
| |
Shape2 |
Squared shape parameter σ² (sigma-squared)
of the log-normal distribution.
| |
Standard |
Gets the Standard Log-Normal Distribution,
with location set to zero and unit shape.
| |
StandardDeviation |
Gets the Standard Deviation (the square root of
the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Support |
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.) | |
Variance |
Gets the Variance (the square of the standard
deviation) for this Log-Normal distribution.
(Overrides UnivariateContinuousDistributionVariance.) |
Name | Description | |
---|---|---|
Clone |
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.) | |
ComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
CumulativeHazardFunction |
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double) |
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
DistributionFunction(Double, Double) |
Gets the cumulative distribution function (cdf) for this
distribution in the semi-closed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Estimate(Double) |
Estimates a new Log-Normal distribution from a given set of observations.
| |
Estimate(Double, NormalOptions) |
Estimates a new Log-Normal distribution from a given set of observations.
| |
Estimate(Double, Double, NormalOptions) |
Estimates a new Log-Normal distribution from a given set of observations.
| |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
Fit(Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Int32) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Fit(Double, Double, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Overrides UnivariateContinuousDistributionFit(Double, Double, IFittingOptions).) | |
Fit(Double, Double, NormalOptions) |
Fits the underlying distribution to a given set of observations.
| |
Fit(Double, Int32, IFittingOptions) |
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.) | |
Generate |
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Random) |
Generates a random observation from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Random).) | |
Generate(Int32) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Random) |
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.) | |
Generate(Int32, Double, Random) |
Generates a random vector of observations from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Int32, Double, Random).) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetRange |
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
HazardFunction |
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
InnerComplementaryDistributionFunction |
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerDistributionFunction |
Gets the cumulative distribution function (cdf) for
the this Log-Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).) | |
InnerInverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
InnerLogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).) | |
InnerProbabilityDensityFunction |
Gets the probability density function (pdf) for
the Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).) | |
InverseDistributionFunction |
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.) | |
LogCumulativeHazardFunction |
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
LogProbabilityDensityFunction |
Gets the log-probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ProbabilityDensityFunction |
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.) | |
QuantileDensityFunction |
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.) | |
Random(Double, Double) |
Generates a random observation from the
Lognormal distribution with the given parameters.
| |
Random(Double, Double, Int32) |
Generates a random vector of observations from the
Lognormal distribution with the given parameters.
| |
Random(Double, Double, Random) |
Generates a random observation from the
Lognormal distribution with the given parameters.
| |
Random(Double, Double, Int32, Double) |
Generates a random vector of observations from the
Lognormal distribution with the given parameters.
| |
Random(Double, Double, Int32, Random) |
Generates a random vector of observations from the
Lognormal distribution with the given parameters.
| |
Random(Double, Double, Int32, Double, Random) |
Generates a random vector of observations from the
Lognormal distribution with the given parameters.
| |
ToString |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(IFormatProvider) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String) |
Returns a String that represents this instance.
(Inherited from DistributionBase.) | |
ToString(String, IFormatProvider) |
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
The log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed.
References:
// Create a new Log-normal distribution with μ = 2.79 and σ = 1.10 var log = new LognormalDistribution(location: 0.42, shape: 1.1); // Common measures double mean = log.Mean; // 2.7870954605658511 double median = log.Median; // 1.5219615583481305 double var = log.Variance; // 18.28163603621158 // Cumulative distribution functions double cdf = log.DistributionFunction(x: 0.27); // 0.057961222885664958 double ccdf = log.ComplementaryDistributionFunction(x: 0.27); // 0.942038777114335 double icdf = log.InverseDistributionFunction(p: cdf); // 0.26999997937815973 // Probability density functions double pdf = log.ProbabilityDensityFunction(x: 0.27); // 0.39035530085982068 double lpdf = log.LogProbabilityDensityFunction(x: 0.27); // -0.94069792674674835 // Hazard (failure rate) functions double hf = log.HazardFunction(x: 0.27); // 0.41437285846720867 double chf = log.CumulativeHazardFunction(x: 0.27); // 0.059708840588116374 // String representation string str = log.ToString("N2", CultureInfo.InvariantCulture); // Lognormal(x; μ = 2.79, σ = 1.10)