Click or drag to resize
Accord.NET (logo) BirnbaumSaundersDistribution Class
Birnbaum-Saunders (Fatigue Life) distribution.
Inheritance Hierarchy
SystemObject
  Accord.Statistics.DistributionsDistributionBase
    Accord.Statistics.Distributions.UnivariateUnivariateContinuousDistribution
      Accord.Statistics.Distributions.UnivariateBirnbaumSaundersDistribution

Namespace:  Accord.Statistics.Distributions.Univariate
Assembly:  Accord.Statistics (in Accord.Statistics.dll) Version: 3.4.0
Syntax
[SerializableAttribute]
public class BirnbaumSaundersDistribution : UnivariateContinuousDistribution
Request Example View Source

The BirnbaumSaundersDistribution type exposes the following members.

Constructors
  NameDescription
Public methodBirnbaumSaundersDistribution
Constructs a Birnbaum-Saunders distribution with location parameter 0, scale 1, and shape 1.
Public methodBirnbaumSaundersDistribution(Double)
Constructs a Birnbaum-Saunders distribution with location parameter 0, scale 1, and the given shape.
Public methodBirnbaumSaundersDistribution(Double, Double, Double)
Constructs a Birnbaum-Saunders distribution with given location, shape and scale parameters.
Top
Properties
  NameDescription
Public propertyEntropy
This method is not supported.
(Overrides UnivariateContinuousDistributionEntropy.)
Public propertyLocation
Gets the distribution's location parameter μ.
Public propertyMean
Gets the mean for this distribution.
(Overrides UnivariateContinuousDistributionMean.)
Public propertyMedian
Gets the median for this distribution.
(Inherited from UnivariateContinuousDistribution.)
Public propertyMode
This method is not supported.
(Overrides UnivariateContinuousDistributionMode.)
Public propertyQuartiles
Gets the Quartiles for this distribution.
(Inherited from UnivariateContinuousDistribution.)
Public propertyScale
Gets the distribution's scale parameter β.
Public propertyShape
Gets the distribution's shape parameter γ.
Public propertyStandardDeviation
Gets the Standard Deviation (the square root of the variance) for the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public propertySupport
Gets the support interval for this distribution.
(Overrides UnivariateContinuousDistributionSupport.)
Public propertyVariance
Gets the variance for this distribution.
(Overrides UnivariateContinuousDistributionVariance.)
Top
Methods
  NameDescription
Public methodClone
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)
Public methodComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Public methodCumulativeHazardFunction
Gets the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double)
Gets the cumulative distribution function (cdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionDistributionFunction(Double).)
Public methodDistributionFunction(Double, Double)
Gets the cumulative distribution function (cdf) for this distribution in the semi-closed interval (a; b] given as P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodFit(Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Int32)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Int32, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRange
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Gets the hazard function, also known as the failure rate or the conditional failure density function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInverseDistributionFunction(Double).)
Public methodLogCumulativeHazardFunction
Gets the log of the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionProbabilityDensityFunction(Double).)
Public methodQuantileDensityFunction
Gets the first derivative of the inverse distribution function (icdf) for this distribution evaluated at probability p.
(Inherited from UnivariateContinuousDistribution.)
Public methodToString
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(IFormatProvider)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String, IFormatProvider)
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by Matrix.)
Top
Remarks

The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. There are several alternative formulations of this distribution in the literature. It is named after Z. W. Birnbaum and S. C. Saunders.

References:

Examples

This example shows how to create a Birnbaum-Saunders distribution and compute some of its properties.

// Creates a new Birnbaum-Saunders distribution
var bs = new BirnbaumSaundersDistribution(shape: 0.42);

double mean = bs.Mean;     // 1.0882000000000001
double median = bs.Median; // 1.0
double var = bs.Variance;  // 0.21529619999999997

double cdf = bs.DistributionFunction(x: 1.4); // 0.78956384911580346
double pdf = bs.ProbabilityDensityFunction(x: 1.4); // 1.3618433601225426
double lpdf = bs.LogProbabilityDensityFunction(x: 1.4); // 0.30883919386130815

double ccdf = bs.ComplementaryDistributionFunction(x: 1.4); // 0.21043615088419654
double icdf = bs.InverseDistributionFunction(p: cdf); // 2.0618330099769064

double hf = bs.HazardFunction(x: 1.4); // 6.4715276077824093
double chf = bs.CumulativeHazardFunction(x: 1.4); // 1.5585729930861034

string str = bs.ToString(CultureInfo.InvariantCulture); // BirnbaumSaunders(x; μ = 0, β = 1, γ = 0.42)
See Also