SOMLearning Class |
Namespace: Accord.Neuro.Learning
The SOMLearning type exposes the following members.
Name | Description | |
---|---|---|
SOMLearning(DistanceNetwork) |
Initializes a new instance of the SOMLearning class.
| |
SOMLearning(DistanceNetwork, Int32, Int32) |
Initializes a new instance of the SOMLearning class.
|
Name | Description | |
---|---|---|
Height |
Gets the neural network's height.
| |
LearningRadius |
Learning radius.
| |
LearningRate |
Learning rate, [0, 1].
| |
Width |
Gets the neural network's width.
|
Name | Description | |
---|---|---|
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
Run |
Runs learning iteration.
| |
RunEpoch |
Runs learning epoch.
| |
ToString | Returns a string that represents the current object. (Inherited from Object.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
This class implements Kohonen's SOM learning algorithm and is widely used in clusterization tasks. The class allows to train Distance Networks.
Sample usage (clustering RGB colors):
// set range for randomization neurons' weights Neuron.RandRange = new Range( 0, 255 ); // create network DistanceNetwork network = new DistanceNetwork( 3, // thress inputs in the network 100 * 100 ); // 10000 neurons // create learning algorithm SOMLearning trainer = new SOMLearning( network ); // network's input double[] input = new double[3]; // loop while ( !needToStop ) { input[0] = rand.Next( 256 ); input[1] = rand.Next( 256 ); input[2] = rand.Next( 256 ); trainer.Run( input ); // ... // update learning rate and radius continuously, // so networks may come steady state }