ILeastSquaresMethod Interface |
Namespace: Accord.Math.Optimization
The ILeastSquaresMethod type exposes the following members.
Name | Description | |
---|---|---|
Function |
Gets or sets a parameterized model function mapping input vectors
into output values, whose optimum parameters must be found.
| |
Gradient |
Gets or sets a function that computes the gradient vector in respect
to the function parameters, given a set of input and output values.
| |
NumberOfVariables |
Gets the number of variables (free parameters) in the optimization problem.
| |
Solution |
Gets the solution found, the values of the parameters which
optimizes the function, in a least squares sense.
| |
StandardErrors |
Gets standard error for each parameter in the solution.
| |
Token |
Gets or sets a cancellation token that can be used to
stop the learning algorithm while it is running.
| |
Value |
Gets the value at the solution found. This should be
the minimum value found for the objective function.
|
Name | Description | |
---|---|---|
Minimize |
Attempts to find the best values for the parameter vector
minimizing the discrepancy between the generated outputs
and the expected outputs for a given set of input data.
|