Hellinger Structure |
Namespace: Accord.Math.Distances
[SerializableAttribute] public struct Hellinger : IMetric<double[]>, IDistance<double[]>, IDistance<double[], double[]>
The Hellinger type exposes the following members.
Name | Description | |
---|---|---|
Distance |
Computes the distance d(x,y) between points
x and y.
| |
Equals | Indicates whether this instance and a specified object are equal. (Inherited from ValueType.) | |
GetHashCode | Returns the hash code for this instance. (Inherited from ValueType.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
ToString | Returns the fully qualified type name of this instance. (Inherited from ValueType.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
In probability and statistics, the Hellinger distance (also called Bhattacharyya distance as this was originally introduced by Anil Kumar Bhattacharya) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.
References: