MinimumMeanDistanceClassifier Class |
Namespace: Accord.MachineLearning
[SerializableAttribute] public class MinimumMeanDistanceClassifier : MulticlassScoreClassifierBase<double[]>, ISupervisedLearning<MinimumMeanDistanceClassifier, double[], int>
The MinimumMeanDistanceClassifier type exposes the following members.
Name | Description | |
---|---|---|
MinimumMeanDistanceClassifier |
Initializes a new instance of the MinimumMeanDistanceClassifier class.
| |
MinimumMeanDistanceClassifier(Double, Int32) |
Initializes a new instance of the MinimumMeanDistanceClassifier class.
| |
MinimumMeanDistanceClassifier(IDistanceDouble, Double, Int32) |
Initializes a new instance of the MinimumMeanDistanceClassifier class.
|
Name | Description | |
---|---|---|
Function |
Gets or sets the distance function to be used when comparing a sample to a class mean.
| |
Means |
Gets or sets the class means to which samples will be compared against.
| |
NumberOfClasses |
Gets the number of classes expected and recognized by the classifier.
(Inherited from ClassifierBaseTInput, TClasses.) | |
NumberOfInputs |
Gets the number of inputs accepted by the model.
(Inherited from TransformBaseTInput, TOutput.) | |
NumberOfOutputs |
Gets the number of outputs generated by the model.
(Inherited from TransformBaseTInput, TOutput.) | |
Token |
Gets or sets a cancellation token that can be used to
stop the learning algorithm while it is running.
|
Name | Description | |
---|---|---|
Compute(Double) | Obsolete.
Computes the label for the given input.
| |
Compute(Double, Double) | Obsolete.
Computes the label for the given input.
| |
Decide(TInput) |
Computes class-label decisions for a given set of input vectors.
(Inherited from ClassifierBaseTInput, TClasses.) | |
Decide(TInput) |
Computes a class-label decision for a given input.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Decide(TInput, TClasses) |
Computes a class-label decision for a given input.
(Inherited from ClassifierBaseTInput, TClasses.) | |
Decide(TInput, Boolean) |
Computes class-label decisions for the given input.
(Inherited from MulticlassClassifierBaseTInput.) | |
Decide(TInput, Double) |
Computes class-label decisions for the given input.
(Inherited from MulticlassClassifierBaseTInput.) | |
Decide(TInput, Int32) |
Computes class-label decisions for the given input.
(Inherited from MulticlassClassifierBaseTInput.) | |
Decide(TInput, Double) |
Computes a class-label decision for a given input.
(Inherited from MulticlassClassifierBaseTInput.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
Learn |
Learns a model that can map the given inputs to the given outputs.
| |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
Score(TInput) |
Computes a numerical score measuring the association between
the given input vector and its most strongly
associated class (as predicted by the classifier).
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput) |
Computes a numerical score measuring the association between
the given input vector and its most strongly
associated class (as predicted by the classifier).
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(Double, Int32) |
Computes a numerical score measuring the association between
the given input vector and a given
classIndex.
(Overrides MulticlassScoreClassifierBaseTInputScore(TInput, Int32).) | |
Score(TInput, Int32) |
Predicts a class label for the input vector, returning a
numerical score measuring the strength of association of the
input vector to its most strongly related class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Double) |
Computes a numerical score measuring the association between
the given input vector and its most strongly
associated class (as predicted by the classifier).
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32) |
Computes a numerical score measuring the association between
the given input vector and a given
classIndex.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32) |
Computes a numerical score measuring the association between
the given input vector and a given
classIndex.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32) |
Predicts a class label for each input vector, returning a
numerical score measuring the strength of association of the
input vector to the most strongly related class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32, Double) |
Computes a numerical score measuring the association between
the given input vector and a given
classIndex.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32, Double) |
Computes a numerical score measuring the association between
the given input vector and a given
classIndex.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Score(TInput, Int32, Double) |
Predicts a class label for each input vector, returning a
numerical score measuring the strength of association of the
input vector to the most strongly related class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput) |
Computes a numerical score measuring the association between
the given input vector and each class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput) |
Computes a numerical score measuring the association between
the given input vector and each class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(Double, Double) |
Computes a numerical score measuring the association between
the given input vector and each class.
(Overrides MulticlassScoreClassifierBaseTInputScores(TInput, Double).) | |
Scores(TInput, Int32) |
Predicts a class label vector for the given input vector, returning a
numerical score measuring the strength of association of the input vector
to each of the possible classes.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput, Double) |
Computes a numerical score measuring the association between
the given input vector and each class.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput, Int32) |
Predicts a class label vector for each input vector, returning a
numerical score measuring the strength of association of the input vector
to each of the possible classes.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput, Int32, Double) |
Predicts a class label vector for the given input vector, returning a
numerical score measuring the strength of association of the input vector
to each of the possible classes.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Scores(TInput, Int32, Double) |
Predicts a class label vector for each input vector, returning a
numerical score measuring the strength of association of the input vector
to each of the possible classes.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
ToMulticlass |
Views this instance as a multi-class generative classifier.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
ToMultilabel |
Views this instance as a multi-label distance classifier,
giving access to more advanced methods, such as the prediction
of one-hot vectors.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
ToString | Returns a string that represents the current object. (Inherited from Object.) | |
Transform(TInput) |
Applies the transformation to an input, producing an associated output.
(Inherited from ClassifierBaseTInput, TClasses.) | |
Transform(TInput) |
Applies the transformation to a set of input vectors,
producing an associated set of output vectors.
(Inherited from TransformBaseTInput, TOutput.) | |
Transform(TInput, TClasses) |
Applies the transformation to an input, producing an associated output.
(Inherited from ClassifierBaseTInput, TClasses.) | |
Transform(TInput, Boolean) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassClassifierBaseTInput.) | |
Transform(TInput, Int32) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassClassifierBaseTInput.) | |
Transform(TInput, Boolean) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassClassifierBaseTInput.) | |
Transform(TInput, Double) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassClassifierBaseTInput.) | |
Transform(TInput, Int32) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassClassifierBaseTInput.) | |
Transform(TInput, Double) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassScoreClassifierBaseTInput.) | |
Transform(TInput, Double) |
Applies the transformation to an input, producing an associated output.
(Inherited from MulticlassScoreClassifierBaseTInput.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
// Create some sample input data instances. double[][] inputs = { // Class 0 new double[] { 4, 1 }, new double[] { 2, 4 }, new double[] { 2, 3 }, // Class 1 new double[] { 5, 5 }, new double[] { 5, 6 }, // Class 2 new double[] { 10, 8 } }; int[] output = { 0, 0, 0, // The first three are from class 0 1, 1, // The second two are from class 1 2 // The last is from class 2 }; // We will create a MMDC object for the data var mmdc = new MinimumMeanDistanceClassifier(); // Compute the analysis and create a classifier mmdc.Learn(inputs, output); // Now we can project the data into mean distance space: double[][] projection = mmdc.Scores(inputs); // Or perform classification using: int[] results = mmdc.Decide(inputs);