Click or drag to resize
Accord.NET (logo)

DecisionStump Class

Simple classifier that based on decision margins that are perpendicular to one of the space dimensions.
Inheritance Hierarchy
SystemObject
  Accord.MachineLearningTransformBaseDouble, Boolean
    Accord.MachineLearningClassifierBaseDouble, Boolean
      Accord.MachineLearningBinaryClassifierBaseDouble
        Accord.MachineLearning.Boosting.LearnersDecisionStump

Namespace:  Accord.MachineLearning.Boosting.Learners
Assembly:  Accord.MachineLearning (in Accord.MachineLearning.dll) Version: 3.8.0
Syntax
[SerializableAttribute]
public class DecisionStump : BinaryClassifierBase<double[]>
Request Example View Source

The DecisionStump type exposes the following members.

Constructors
  NameDescription
Public methodDecisionStump
Initializes a new instance of the DecisionStump class.
Public methodDecisionStump(Int32) Obsolete.
Initializes a new instance of the DecisionStump class.
Top
Properties
  NameDescription
Public propertyComparison
Gets or sets the comparison to be performed.
Public propertyIndex
Gets the index of the attribute which this classifier will use to compare against Threshold.
Public propertyNumberOfClasses
Gets the number of classes expected and recognized by the classifier.
(Inherited from ClassifierBaseTInput, TClasses.)
Public propertyNumberOfInputs
Gets the number of inputs accepted by the model.
(Inherited from TransformBaseTInput, TOutput.)
Public propertyNumberOfOutputs
Gets the number of outputs generated by the model.
(Inherited from TransformBaseTInput, TOutput.)
Public propertySign Obsolete.
Gets the direction of the comparison (if greater than or less than).
Public propertyThreshold
Gets the decision threshold for this linear classifier.
Top
Methods
  NameDescription
Public methodCompute Obsolete.
Computes the output class label for a given input.
Public methodDecide(TInput)
Computes class-label decisions for a given set of input vectors.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodDecide(Double)
Computes a class-label decision for a given input.
(Overrides ClassifierBaseTInput, TClassesDecide(TInput).)
Public methodDecide(TInput, Boolean)
Computes class-label decisions for the given input.
(Inherited from BinaryClassifierBaseTInput.)
Public methodDecide(TInput, TClasses)
Computes a class-label decision for a given input.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodLearn Obsolete.
Teaches the stump classifier to recognize the class labels of the given input samples.
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodToMulticlass
Views this instance as a multi-class classifier, giving access to more advanced methods, such as the prediction of integer labels.
(Inherited from BinaryClassifierBaseTInput.)
Public methodToMultilabel
Views this instance as a multi-label classifier, giving access to more advanced methods, such as the prediction of one-hot vectors.
(Inherited from BinaryClassifierBaseTInput.)
Public methodToString
Returns a string that represents the current object.
(Inherited from Object.)
Public methodTransform(TInput)
Applies the transformation to an input, producing an associated output.
(Inherited from ClassifierBaseTInput, TClasses.)
Public methodTransform(TInput)
Applies the transformation to a set of input vectors, producing an associated set of output vectors.
(Inherited from TransformBaseTInput, TOutput.)
Public methodTransform(TInput, Boolean)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Boolean)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Double)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, Int32)
Applies the transformation to an input, producing an associated output.
(Inherited from BinaryClassifierBaseTInput.)
Public methodTransform(TInput, TClasses)
Applies the transformation to an input, producing an associated output.
(Inherited from ClassifierBaseTInput, TClasses.)
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodTo(Type)Overloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
Examples

The DecisionStump classifier is mostly intended to be used as a weak classifier in the context of an AdaBoostTModel learning algorithm. Please refer to the AdaBoostTModel class for more examples on using the classifier in this scenario. A simple example is shown below:

// Let's say we want to classify the following 2-dimensional 
// data samples into 2 possible classes, either true or false:
double[][] inputs =
{
    new double[] {  10, 42 },
    new double[] { 162, 96 },
    new double[] { 125, 20 },
    new double[] {  96,  6 },
    new double[] {   2, 73 },
    new double[] {  52, 51 },
    new double[] {  71, 49 },
};

// And those are their associated class labels
bool[] outputs =
{
    false, false, true, true, false, false, true
};

// We can create an AdaBoost algorithm as:
var learner = new AdaBoost<DecisionStump>()
{
    Learner = (p) => new ThresholdLearning(),

    // Train until:
    MaxIterations = 5,
    Tolerance = 1e-3
};

// Now, we can use the Learn method to learn a boosted classifier
Boost<DecisionStump> classifier = learner.Learn(inputs, outputs);

// And we can test its performance using (error should be 0):
ConfusionMatrix cm = ConfusionMatrix.Estimate(classifier, inputs, outputs);

double error = cm.Error;  // should be 0.0
double acc = cm.Accuracy; // should be 1.0
double kappa = cm.Kappa;  // should be 1.0

// And compute a decision for a single data point using:
bool y = classifier.Decide(inputs[0]); // result should false

It is also possible to use the DecisionStump as a standalone classifier through the ThresholdLearning algorithm. An example is given below:

// Let's say we want to classify the following 2-dimensional 
// data samples into 2 possible classes, either true or false:
double[][] inputs =
{
    new double[] {  10, 42 },
    new double[] { 162, 96 },
    new double[] { 125, 20 },
    new double[] {  96,  6 },
    new double[] {   2, 73 },
    new double[] {  52, 51 },
    new double[] {  71, 49 },
};

// And those are their associated class labels
bool[] outputs =
{
    false, false, true, true, false, false, true
};

// We create a learning algorithm as:
var teacher = new ThresholdLearning();

// Now, we can use the Learn method to learn a classifier:
DecisionStump classifier = teacher.Learn(inputs, outputs);

// Now, we can check how good it is using a confusion matrix:
var cm = ConfusionMatrix.Estimate(classifier, inputs, outputs);

double error = cm.Error; // should be ~0.14

// We can also compute the model outputs for new samples using
bool y = classifier.Decide(new double[] { 71, 48 }); // should be false
See Also