MNIST Class |
Namespace: Accord.DataSets
The MNIST type exposes the following members.
Name | Description | |
---|---|---|
Path |
Gets the path to the directory where the datasets will be stored.
(Inherited from WebDataSet.) | |
Testing |
Gets the testing set of the MNIST dataset.
| |
Training |
Gets the training set of the MNIST dataset.
|
Name | Description | |
---|---|---|
Download |
Downloads the dataset from a specified URL, saving it to disk, and returning
it as a set of sparse vectors>. If the dataset
already exists in the disk, it will not be redownloaded again.
(Inherited from SparseDataSet.) | |
Equals | Determines whether the specified object is equal to the current object. (Inherited from Object.) | |
Finalize | Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.) | |
GetHashCode | Serves as the default hash function. (Inherited from Object.) | |
GetType | Gets the Type of the current instance. (Inherited from Object.) | |
MemberwiseClone | Creates a shallow copy of the current Object. (Inherited from Object.) | |
ToString | Returns a string that represents the current object. (Inherited from Object.) |
Name | Description | |
---|---|---|
HasMethod |
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.) | |
IsEqual |
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.) | |
To(Type) | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) | |
ToT | Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) |
The MNIST database (Mixed National Institute of Standards and Technology database) is a large database of handwritten digits that is commonly used for training various image processing systems. The database is also widely used for training and testing in the field of machine learning. It was created by "re-mixing" the samples from NIST's original datasets. The creators felt that since NIST's training dataset was taken from American Census Bureau employees, while the testing dataset was taken from American high school students, it was not well-suited for machine learning experiments. Furthermore, the black and white images from NIST were normalized to fit into a 20x20 pixel bounding box and anti-aliased, which introduced grayscale levels.
The MNIST database contains 60,000 training images and 10,000 testing images. Half of the training set and half of the test set were taken from NIST's training dataset, while the other half of the training set and the other half of the test set were taken from NIST's testing dataset. There have been a number of scientific papers on attempts to achieve the lowest error rate; one paper, using a hierarchical system of convolutional neural networks, manages to get an error rate on the MNIST database of 0.23 percent. The original creators of the database keep a list of some of the methods tested on it. In their original paper, they use a support vector machine to get an error rate of 0.8 percent.
References: