Click or drag to resize
Accord.NET (logo)

NormalDistribution Methods

The NormalDistribution type exposes the following members.

Methods
  NameDescription
Public methodClone
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)
Public methodComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)
Public methodCumulativeHazardFunction
Gets the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double)
Gets the cumulative distribution function (cdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodDistributionFunction(Double, Double)
Gets the cumulative distribution function (cdf) for this distribution in the semi-closed interval (a; b] given as P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)
Public methodEquals
Determines whether the specified object is equal to the current object.
(Inherited from Object.)
Public methodStatic memberEstimate(Double)
Estimates a new Normal distribution from a given set of observations.
Public methodStatic memberEstimate(Double, NormalOptions)
Estimates a new Normal distribution from a given set of observations.
Public methodStatic memberEstimate(Double, Double, NormalOptions)
Estimates a new Normal distribution from a given set of observations.
Protected methodFinalize
Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection.
(Inherited from Object.)
Public methodCode exampleFit(Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Double)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodCode exampleFit(Double, Int32)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodFit(Double, Double, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Overrides UnivariateContinuousDistributionFit(Double, Double, IFittingOptions).)
Public methodFit(Double, Double, NormalOptions)
Fits the underlying distribution to a given set of observations.
Public methodCode exampleFit(Double, Int32, IFittingOptions)
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Random)
Generates a random observation from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Random).)
Public methodGenerate(Int32)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Random)
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)
Public methodGenerate(Int32, Double, Random)
Generates a random vector of observations from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Int32, Double, Random).)
Public methodGetHashCode
Serves as the default hash function.
(Inherited from Object.)
Public methodGetRange
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)
Public methodGetType
Gets the Type of the current instance.
(Inherited from Object.)
Public methodHazardFunction
Gets the hazard function, also known as the failure rate or the conditional failure density function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodInnerComplementaryDistributionFunction
Gets the complementary cumulative distribution function (ccdf) for this distribution evaluated at point x. This function is also known as the Survival function.
(Overrides UnivariateContinuousDistributionInnerComplementaryDistributionFunction(Double).)
Protected methodCode exampleInnerDistributionFunction
Gets the cumulative distribution function (cdf) for the this Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).)
Protected methodCode exampleInnerInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).)
Protected methodCode exampleInnerLogProbabilityDensityFunction
Gets the probability density function (pdf) for the Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).)
Protected methodCode exampleInnerProbabilityDensityFunction
Gets the probability density function (pdf) for the Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).)
Public methodInverseDistributionFunction
Gets the inverse of the cumulative distribution function (icdf) for this distribution evaluated at probability p. This function is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogCumulativeHazardFunction
Gets the log of the cumulative hazard function for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodLogProbabilityDensityFunction
Gets the log-probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Protected methodMemberwiseClone
Creates a shallow copy of the current Object.
(Inherited from Object.)
Public methodProbabilityDensityFunction
Gets the probability density function (pdf) for this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)
Public methodQuantileDensityFunction
Gets the first derivative of the inverse distribution function (icdf) for this distribution evaluated at probability p.
(Inherited from UnivariateContinuousDistribution.)
Public methodStatic memberRandom
Generates a random value from a standard Normal distribution (zero mean and unit standard deviation).
Public methodStatic memberRandom(Random)
Generates a random value from a standard Normal distribution (zero mean and unit standard deviation).
Public methodStatic memberRandom(Double, Double)
Generates a single random observation from the Normal distribution with the given parameters.
Public methodStatic memberRandom(Int32, Double)
Generates a random vector of observations from the standard Normal distribution (zero mean and unit standard deviation).
Public methodStatic memberRandom(Double, Double, Int32)
Generates a random vector of observations from the Normal distribution with the given parameters.
Public methodStatic memberRandom(Double, Double, Random)
Generates a single random observation from the Normal distribution with the given parameters.
Public methodStatic memberRandom(Int32, Double, Random)
Generates a random vector of observations from the standard Normal distribution (zero mean and unit standard deviation).
Public methodStatic memberRandom(Double, Double, Int32, Double)
Generates a random vector of observations from the Normal distribution with the given parameters.
Public methodStatic memberRandom(Double, Double, Int32, Random)
Generates a random vector of observations from the Normal distribution with the given parameters.
Public methodStatic memberRandom(Double, Double, Int32, Double, Random)
Generates a random vector of observations from the Normal distribution with the given parameters.
Public methodToMultivariateDistribution
Converts this univariate distribution into a 1-dimensional multivariate distribution.
Public methodToString
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(IFormatProvider)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String)
Returns a String that represents this instance.
(Inherited from DistributionBase.)
Public methodToString(String, IFormatProvider)
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).)
Public methodZScore
Gets the Z-Score for a given value.
Top
Extension Methods
  NameDescription
Public Extension MethodHasMethod
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)
Public Extension MethodIsEqual
Compares two objects for equality, performing an elementwise comparison if the elements are vectors or matrices.
(Defined by Matrix.)
Public Extension MethodTo(Type)Overloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Public Extension MethodToTOverloaded.
Converts an object into another type, irrespective of whether the conversion can be done at compile time or not. This can be used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)
Top
See Also