NormalDistribution Methods 
The NormalDistribution type exposes the following members.
Name  Description  

Clone 
Creates a new object that is a copy of the current instance.
(Overrides DistributionBaseClone.)  
ComplementaryDistributionFunction 
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Inherited from UnivariateContinuousDistribution.)  
CumulativeHazardFunction 
Gets the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
DistributionFunction(Double) 
Gets the cumulative distribution function (cdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
DistributionFunction(Double, Double) 
Gets the cumulative distribution function (cdf) for this
distribution in the semiclosed interval (a; b] given as
P(a < X ≤ b).
(Inherited from UnivariateContinuousDistribution.)  
Equals  Determines whether the specified object is equal to the current object. (Inherited from Object.)  
Estimate(Double) 
Estimates a new Normal distribution from a given set of observations.
 
Estimate(Double, NormalOptions) 
Estimates a new Normal distribution from a given set of observations.
 
Estimate(Double, Double, NormalOptions) 
Estimates a new Normal distribution from a given set of observations.
 
Finalize  Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage collection. (Inherited from Object.)  
Fit(Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Int32) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Fit(Double, Double, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Overrides UnivariateContinuousDistributionFit(Double, Double, IFittingOptions).)  
Fit(Double, Double, NormalOptions) 
Fits the underlying distribution to a given set of observations.
 
Fit(Double, Int32, IFittingOptions) 
Fits the underlying distribution to a given set of observations.
(Inherited from UnivariateContinuousDistribution.)  
Generate 
Generates a random observation from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Random) 
Generates a random observation from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Random).)  
Generate(Int32) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Double) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Random) 
Generates a random vector of observations from the current distribution.
(Inherited from UnivariateContinuousDistribution.)  
Generate(Int32, Double, Random) 
Generates a random vector of observations from the current distribution.
(Overrides UnivariateContinuousDistributionGenerate(Int32, Double, Random).)  
GetHashCode  Serves as the default hash function. (Inherited from Object.)  
GetRange 
Gets the distribution range within a given percentile.
(Inherited from UnivariateContinuousDistribution.)  
GetType  Gets the Type of the current instance. (Inherited from Object.)  
HazardFunction 
Gets the hazard function, also known as the failure rate or
the conditional failure density function for this distribution
evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
InnerComplementaryDistributionFunction 
Gets the complementary cumulative distribution function
(ccdf) for this distribution evaluated at point x.
This function is also known as the Survival function.
(Overrides UnivariateContinuousDistributionInnerComplementaryDistributionFunction(Double).)  
InnerDistributionFunction 
Gets the cumulative distribution function (cdf) for
the this Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerDistributionFunction(Double).)  
InnerInverseDistributionFunction 
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Overrides UnivariateContinuousDistributionInnerInverseDistributionFunction(Double).)  
InnerLogProbabilityDensityFunction 
Gets the probability density function (pdf) for
the Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerLogProbabilityDensityFunction(Double).)  
InnerProbabilityDensityFunction 
Gets the probability density function (pdf) for
the Normal distribution evaluated at point x.
(Overrides UnivariateContinuousDistributionInnerProbabilityDensityFunction(Double).)  
InverseDistributionFunction 
Gets the inverse of the cumulative distribution function (icdf) for
this distribution evaluated at probability p. This function
is also known as the Quantile function.
(Inherited from UnivariateContinuousDistribution.)  
LogCumulativeHazardFunction 
Gets the log of the cumulative hazard function for this
distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
LogProbabilityDensityFunction 
Gets the logprobability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
MemberwiseClone  Creates a shallow copy of the current Object. (Inherited from Object.)  
ProbabilityDensityFunction 
Gets the probability density function (pdf) for
this distribution evaluated at point x.
(Inherited from UnivariateContinuousDistribution.)  
QuantileDensityFunction 
Gets the first derivative of the
inverse distribution function (icdf) for this distribution evaluated
at probability p.
(Inherited from UnivariateContinuousDistribution.)  
Random 
Generates a random value from a standard Normal
distribution (zero mean and unit standard deviation).
 
Random(Random) 
Generates a random value from a standard Normal
distribution (zero mean and unit standard deviation).
 
Random(Double, Double) 
Generates a single random observation from the
Normal distribution with the given parameters.
 
Random(Int32, Double) 
Generates a random vector of observations from the standard
Normal distribution (zero mean and unit standard deviation).
 
Random(Double, Double, Int32) 
Generates a random vector of observations from the
Normal distribution with the given parameters.
 
Random(Double, Double, Random) 
Generates a single random observation from the
Normal distribution with the given parameters.
 
Random(Int32, Double, Random) 
Generates a random vector of observations from the standard
Normal distribution (zero mean and unit standard deviation).
 
Random(Double, Double, Int32, Double) 
Generates a random vector of observations from the
Normal distribution with the given parameters.
 
Random(Double, Double, Int32, Random) 
Generates a random vector of observations from the
Normal distribution with the given parameters.
 
Random(Double, Double, Int32, Double, Random) 
Generates a random vector of observations from the
Normal distribution with the given parameters.
 
ToMultivariateDistribution 
Converts this univariate distribution into a
1dimensional multivariate distribution.
 
ToString 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(IFormatProvider) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String) 
Returns a String that represents this instance.
(Inherited from DistributionBase.)  
ToString(String, IFormatProvider) 
Returns a String that represents this instance.
(Overrides DistributionBaseToString(String, IFormatProvider).)  
ZScore 
Gets the ZScore for a given value.

Name  Description  

HasMethod 
Checks whether an object implements a method with the given name.
(Defined by ExtensionMethods.)  
IsEqual 
Compares two objects for equality, performing an elementwise
comparison if the elements are vectors or matrices.
(Defined by Matrix.)  
To(Type)  Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.)  
ToT  Overloaded.
Converts an object into another type, irrespective of whether
the conversion can be done at compile time or not. This can be
used to convert generic types to numeric types during runtime.
(Defined by ExtensionMethods.) 