|
ToolsToConfusionMatrixTModel, TInput Method (CrossValidationResultTModel, TInput, Boolean, TInput, Boolean)
|
Namespace:
Accord.MachineLearning
Assembly:
Accord.MachineLearning (in Accord.MachineLearning.dll) Version: 3.8.0
Syntax public static ConfusionMatrix ToConfusionMatrix<TModel, TInput>(
this CrossValidationResult<TModel, TInput, bool> cv,
TInput[] inputs,
bool[] outputs
)
where TModel : class, Object, ITransform<TInput, bool>
<ExtensionAttribute>
Public Shared Function ToConfusionMatrix(Of TModel As {Class, Object, ITransform(Of TInput, Boolean)}, TInput) (
cv As CrossValidationResult(Of TModel, TInput, Boolean),
inputs As TInput(),
outputs As Boolean()
) As ConfusionMatrix
Request Example
View SourceParameters
- cv
- Type: Accord.MachineLearning.PerformanceCrossValidationResultTModel, TInput, Boolean
The cross-validation result. - inputs
- Type: TInput
The inputs fed to the cross-validation object. - outputs
- Type: SystemBoolean
The outputs fed to the cross-validation object.
Type Parameters
- TModel
- The type of the model being evaluated.
- TInput
- The type of the inputs accepted by the model.
Return Value
Type:
ConfusionMatrixA
ConfusionMatrix that captures the performance of the model across all validation folds.
Usage Note
In Visual Basic and C#, you can call this method as an instance method on any object of type
CrossValidationResultTModel,
TInput,
Boolean. When you use instance method syntax to call this method, omit the first parameter. For more information, see
Extension Methods (Visual Basic) or
Extension Methods (C# Programming Guide).
See Also